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INTRODUCTION

Purpose and Scope of the Research

Outcome predictions (natural history, therapy-specific, and post-therapy) are crucial to
cancer because they estimate the natural history of the disease (natural history), are required for
determining the optimal therapy (therapy-specific), evaluate the effectiveness of treatment (post-
therapy), and they can be used to match patients for clinical trials, provide patient information, and
perform quality assurance assessments.(Burke, 1998) '

In the past staging systems provided a simple, easily understood ordering of patient
outcomes (all patients were assumed to experience one of four possible outcomes). For over thirty
years breast cancer outcome prediction has been based on the TNM staging system. There are two
problems with staging systems generally, and specifically with the TNM system: (1) they are not
very accurate, i.e., their predictions are not close to the true outcomes), and (2) their accuracy can
not be substantially improved because additional predictive factors can not be included in the
system without increasing the system's complexity to the point where it is not longer useful to the
clinician.(Burke, 1993)

The objective of this research is to replace with current TNM stage system with a new
prognostic system that is inherently more accurate than the current system and that can integrate
new prognostic factors to further improve prognostic accuracy. There are three components to
accomplishing this objective, which are the goals of this research project: (1) the development of
the prognostic model itself, (2) the creation of the prognostic system by training the model with
breast cancer outcome data, and (3) the computer-based implementation of the system for clinicians
and tumor registries (clinical decision support system).

Background

In America during most of this century the treatment for breast cancer was either a radical
mastectomy,(Donegan, 1979) as described by Halsted before the turn of the century,(Halsted,
1894) or a modified radical mastectomy, as described by Patey.(Preisler, 1992) More recently
lumpectomy, chemotherapy, and radiation therapy have become important treatment modalities.
With the rise of effective therapies has come the need for methods that accurately assess prognosis,
because therapy depends on prognosis and the patient's wishes. By the 1950s there were many
incompatible staging systems in existence for breast and other cancers. The TNM staging system
(primary tumor, regional lymph nodes, and distant metastases) originated as a response to the need
for an accurate, universal staging system.(Fleming, 1997)

Since the TNM staging system began in the 1960's many putative prognostic factors have been
identified for breast cancer (Burke, 1995a). The proliferation of putative prognostic factors raises
several issues regarding the identification of prognostic factors. These issues include: what are the
criteria for determining what putative prognostic factors to test, in what context are the factors
prognostic, do the factors retain their prognostic value in the presence of other prognostic factors
or do they require other factors in order to be prognostic, and how can prognostic factors be
combined to increase overall predictive accuracy? The result of the proliferation of putative
prognostic factors is clinical confusion; no one knows how to integrate these factors nor how to
reconcile conflicting prognostic factor predictions. Further, almost none of the putative prognostic
factors have been tested in large, random sample data sets that include all important prognostic
factors and all treatment modalities and have ten year follow-up.




The identification and integration of new prognostic factors is crucial to providing more
accurate outcome predictions (recurrence, death, etc.). It is not possible to integrate new factors in
the TNM stage model for several reasons.(Burke, 1993) First, the TNM stage model is based on a
bin model with 40 bins (5x4x2), and it has all the characteristics of a bin model. One characteristic
of a bin model is that the number of bins increases rapidly with the number of variables. For
example, if we add the variable histologic grade, with its four types, to the TNM stage model, the
result is 160 bins (5 x 4 x 2 x 4). Thus, for any set of new variables, the number of bins that
would have to be added to a stage would be enormous, and the system would become too complex
to be useful. Second, adding variables to the TNM stage model would demonstrate another
characteristic of the model, namely that it is a post hoc system. In a post hoc system the outcomes
are examined and the bins/stages are arranged in order of decreasing survival. The only way to add
a variable to such a system is to collect a large data set with all the predictive variables present and
create a new set of stages. With each new variable this process must be repeated. Third, since the
accuracy of a bin/stage model depends on the number of patients in each bin, as the number of
variables increases the number of bins increases, and the number of patients must increase
exponentially to have enough patients per bin to maintain accuracy.

A new prognostic system is required; a system that can test putative prognostic factors and
integrate them to increase predictive accuracy. This increase in accuracy will improve our ability to
select the most effective therapy, enroll patients in clinical trials, provide information to patients,
and develop quality assurance programs.

If we are to go beyond the current prognostic system three fundamental questions must be
answered. How accurate is the current TNM stage system? Can another outcome prediction system
increase prognostic accuracy using just the TNM variables? Can putative prognostic factors be
integrated into a new prognostic system to increase prognostic accuracy?

BODY

Methods, Assumptions, and Procedures

Data sets and variables

We use the Commission on Cancer's breast cancer Patient Care Evaluation (PCE) data set,
the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) breast cancer
data set, and Duke University Medical Center's breast cancer data set.

In October 1992, the American College of Surgeons (ACS) requested cancer information
from ACS accredited hospital tumor registries in the United States. Specifically, they requested the
first 25 cases of first diagnosis breast cancer and colorectal cancer seen at each institution in 1983,
as well as follow-up information, including deaths, through the date of the request. Variables from
this data set used in the breast cancer analysis are: age, race, payment method, menopausal status,
family history, previous biopsy, other cancer, other breast cancer, nipple discharge, mammogram,
where in the breast the cancer occurred, necrosis, histologic grade, estrogen receptor status,
progesterone receptor status, number of lymph nodes positive, number of lymph nodes examined,
presence or absence of distant metastasis, tumor size, tumor type (in situ, extension to chest wall,
inflammatory), treatment (surgery, chemotherapy, radiation therapy), and outcome (alive or dead).
All variables are binary except age, tumor size, number of positive lymph nodes, and number of
lymph nodes examined. The PCE data set contains up to eight years of follow-up information. The
analysis endpoint is breast cancer-specific five year survival. Cases with missing data and those
censored before five years were excluded. The data set was randomly divided into a training set of
5,169 cases, including training and stop-training subsets, and a testing set of 3,102 cases.




Variables from the PCE data base used in the colorectal cancer analysis are: age, race, sex,
signs and symptoms (change in bowel habits, obstruction, jaundice, malaise, occult blood,
abdominal pain, pelvic pain, rectal bleeding, other), diagnostic and extent of disease tests
(endoscopic, radiographic, barium enema, CT scan, biopsy, CEA, x-ray, colonoscopy, flexible
sigmoidoscopy, IVP, liver function tests, biopsy, other), primary site of tumor, level of tumor,
histology, grade, number of lymph nodes examined, number of lymph nodes positive, distant
metastases, and outcome (alive or dead). The endpoint is five year colorectal cancer specific
survival. After removing cases with missing data and censored patients, the data set was randomly
divided into a set of 5,007 training cases, including training and stop-training subsets, and a testing
set of 3,005 cases.

The National Cancer Institute's SEER breast cancer data set, for new cases collected from
1977-1982, with ten-year follow-up, is also analyzed. The SEER data set extent of disease
variables are comparable to, but not always identical with, the TNM variables. The endpoint is
breast cancer specific ten year survival. After removing cases with missing data and censored
patients, the data set was randomly divided into a set of 3,788 training cases, including training
and stop-training subsets, and a testing set of 2,999 cases.

‘The Duke data set has been described in a previous paper.(Marks, 1994) Briefly, all
patients were pathologic TNM stage I or early stage II. Early stage II included all the TNM stage II
patients except those with five or more positive lymph nodes. The variables were: age, race, tumor
size, nodes positive, nodal stage, nuclear grade, histologic grade, p53, c-erbB-2, estrogen receptor
(ER) and progesterone receptor (PR), vascular invasion, adjuvant therapy (tamoxifen,
chemotherapy), and radiation therapy. Patients who underwent a lumpectomy received radiation
therapy. Patients who underwent a modified radical mastectomy did not receive radiation therapy.
There are 229 cases of which 226 had complete data for all variables except ER and PR status.
Because of the number of cases missing either ER or PR both were removed from the data set. The
survival rate was 70%. The prediction endpoints were five and ten year overall survival.

Combining factors

It is rarely the case that one factor is sufficiently predictive, i.e., that it is able to predict the
outcome of interest with 100% accuracy. The usual strategy when dealing with predictors is to combine
several in a predictive model. The most useful grouping of factors is one in which all the factors are

powerful and predictively orthogonal to each other, i.e., they represent independent aspects of the disease
process. If they represent aspects of the disease that are not independent then their information will overlap

and one will not add predictive power. The statistical method employed must be able to capture the

complexity of the disease process that is represented by the factors being combined, e.g., nonlinearity and

interactions.(Burke, 1998)

A predictive model is the result of using a statistical method to relate one or more predictive factors

to an outcome. For example, the mathematical formula generated by the logistic regression statistical

method relates the predictive factors (input variables), in terms of their 8-coefficients, to a binary disease

outcome, e.g., relapse, death, etc.

It should be noted that the predictive power of a factor must always be associated with the
statistical method and the other factors included in the model in any statement of the factor's accuracy
because a factor's power can vary with the model. The model may or may not contain all the relevant
factors and it may or may not be efficient in capturing the power of the factors.




Methods for combining factor:

Many methods have been used to combine predictive factors. The main methods in cancer are:
bins, stages, indexes, either as discrete endpoint or as Kaplan-Meier product-limit models; decision trees;
and regression methods including logistic, proportional hazards, and artificial neural networks.

Bins are the result of the mutually exclusive and exhaustive partitioning of discrete variables. Each
combination of variable values is a bin and every patient is placed in the bin corresponding to their variable
value combination. An example is the TNM classification of ovarian cancer. Tumor location (T1a, T1b,
T1lc, T2a, T2b, T2¢, T3a, T3b, T3c), regional lymph node involvement (NO, N1), and existence of
metastases (MO, M1) produce thirty-six bins.

If there are enough people in each bin, it can be shown that the frequency of the outcome in the
population within each bin is the best predictor of the true outcome. In other words, no prediction model
can be more accurate than the bin model if the variables are discrete and the population very large.
Problems with bin models include: (1) Continuous variables must be parsed into discrete variables, almost
always resulting in a loss of predictive information and therefore a loss of accuracy. (2) As the number of
discrete variables increase the number of bins increase exponentially. In order to maintain accuracy there
most be a corresponding exponential increase in the size of the patient population. (3) The proliferation of
bins reduces the ability to understand the phenomena. Since the main reason of creating a bin model is
usually for ease of understanding and ease of use, bin models are rarely used in situations where there are
more than two or three predictive factors.

A partial solution to the problems of a bin model is a stage model. A stage model is the grouping of
bins into super-bins. The justification for the grouping is the assumption that the factors selected are
indexes of the "stages" of the disease process. For example, in breast cancer, the TNM staging system
combines forty TNM classification bins into six super-bins based on decreasing survival, and these super-
bins are termed the TNM staging system.

A small set of stages have the potential to maintain explanatory simplicity and ease of use.
Problems with stage models include: (1) The combining of bins into super-bins/stages usually
substantially reduces predictive accuracy. (2) Stage systems do not overcome the exponential increase in
bins and in patients associated with adding a variable to the staging system, they just delay the problem at
the cost of predictive accuracy. If the stages are held constant as variables (and their associated bins) are
added the staging system, the potential improvement in accuracy associated with the additional bins will
be small to nonexistent. But, if the stages are expanded to accommodate additional bins, the system looses
its ease of understanding and usefulness. Thus, attempts to improve predictive accuracy by adding
variables to a bin/stage model are rarely successful. (3) The problems of parsing continuous variables,
with the resulting loss in predictive accuracy, remains.

Indexes associate numerical scores (usually based on a bounded, linear scale) with bins or groups
of bins. The scores are parsed into discrete ranges, and each range is associated with a disease stage
(usually a severity of illness system). Indexes offer some flexibility in the grouping of bins, but at the cost
of further degradation in predictive accuracy. The simplest example of an index is the Apgar score.

Any bin, group of bins, stages, or scores can be contrasted, in terms of outcome, with another
bins, group of bins, stages or scores at the end of a single time interval or across a series of event time
intervals. (In other words, comparing predictive factors.) Both the single time interval and the event
interval approaches usually deal with censoring by dropping censored cases at the time interval in which
they are censored. The most common descriptive approach for contrasting predictive factors across a series
of event time intervals is the Kaplan-Meier product-limit method (inferential methods that can
accommodate continuous variables, and that usually require a proportional hazards assumption, will be
discussed later when regression methods are presented). A Kaplan-Meier plot should always include
confidence intervals around each line. A significant difference is a Kaplan-Meier comparison is usually




assessed by a log-rank test (which assumes proportional hazards). It is important to note that there is
currently no widely accepted method for comparing the accuracy of two Kaplan-Meier comparisons based
on different stratifications of the same variables. The use of the log-rank p-value to select one stratification
over another is incorrect because the log-rank test determines whether a factor stratification is likely to have
occurred by chance. Extreme stratifications may result in a smaller p-value, but it may also reduce
predictive accuracy over the entire population.

Univariate methods, including univariate regression methods, are not appropriate for deciding
whether a factor is or is not predictive. These methods should not be used to assert that a factor is
predictive because a new factor must be assessed in the context of the known factors. Univariate methods
should not be used to assert that a factor is not predictive because a variable may be predictive only when it
is interacting with other factors. ' '

Decision trees split predictive factors to maximize predictive power using a loss function such as
the log-likelihood and a greedy search algorithm. The most well known decision tree approach is the
Classification and Regression Trees (CART) recursive partitioning method (Breiman, 1984). Empirically,
we have never found it to be the most accurate statistical method, when compared to regression methods.
Its problems include the selection of the correct loss function, it has difficulty dealing with continuous
variables. and it can overfit when searching for the best predictors and when there are more than a two or
three splits.

Logistic regression is the cumulative probability of a binary event occurring by a specific time. It
uses a maximum likelihood loss function and a greedy search technique. It is a very efficient method for
problems that have a binary outcome (e.g., recurrence, survival). Its limitation is that it must span a large
time interval and does not differentiate when an event occurs in the time interval. Also, in order to handle
censoring one must create a logistic regression model for each time interval and drop the cases that are
censored in each interval.

"Proportional hazards" methods include the Weibull, exponential, and Cox. The Cox proportional
hazards regression method (Cox, 1972) is the most commonly used. All three methods assume that the
hazard of each patient is proportional to the hazards of all the other patients and that the degree of each
patient's hazard is related to their relative risk. The Cox model does not create survival curves. For
survival curves a baseline hazard must be introduced (Cox-Breslow estimates; Breslow, 1974). Some
researchers incorrectly believe that the Cox is the only regression method that can deal with censoring. A
multi-interval logistic regression can deal with missing data. In cancer, the proportional hazards
assumption is often violated. Therefore, anyone using a Cox model must demonstrate that proportional
hazards holds for their factors and outcome.

Molecular genetic factors exhibit the properties of complex systems, they are nonlinear and
they are interactional, i.e., they act nonmonotonically and in concert.(Steel, 1993) Thus, capturing
the factors as part of a complex system is critical to accurate prediction of the behavior of the
system. Artificial neural networks are capable of complex systems. (Burke, 1996)

The idea that learning can be viewed as the modification of information by repetitively
passing it through processing nodes originated in the late 1940's as a way to model the physiology
of neuronal processes.(Hebb, 1949) The operationalization of this idea was called an artificial
neural network. Gradually it became apparent that this information theoretic approach to learning
was very powerful and very general; it was useful in, and applicable to, many learning situations.
Since statistics can be viewed as learning from the data, it is not unexpected that this approach
would be mathematically proved and operationalized within the domain of statistics.

Artificial neural networks are universal approximators. It has been shown that any real,
continuous function can be approximated to any degree of precision by a three-layer network with
x in the input layer (patient variables), a hidden layer of sigmodal units, and one layer of output




units (the outcome is what is be predicted, for example, death), as long as the hidden layer can be
arbitrarily large. (Hornik, 1990, 1994)

Artificial neural networks, as a class of nonlinear regression and discrimination statistical
methods, are of proven value in many areas of medicine. (Baxt, 1995; Dybowski, 1995;
Westenskow, 1992; Tourassi, 1993; Leonh, 1992; Gabor, 1992, von Osdol, 1994)) They do not
require a priori information regarding the phenomenon, they make no distributional assumptions,
and with the appropriate method to avoid overfitting (i.e., loss of generalization by fitting the
patterns to the test data too precisely), artificial neural networks are usually at least as accurate as
classical statistical models and, depending on the complexity of the phenomena, can be much more
accurate. Artificial neural networks have, for example, been shown to be more accurate than
logistic regression, CART (pruned or shrunk), and principal components analysis at predicting
five year breast cancer specific survival. (Burke, 1995b)

There are many types of neural networks. Backpropagation neural networks are the most
commonly used neural networks is medical research. Examples of backpropagation neural
networks include the "classical" method (described below), cascade correlation,(Fahlman, 1991)
and conjugate gradient descent.(Weiss, 1991) Instead of global error reduction the cascade
correlation neural network creates a hidden layer node to reduce the error. Additional nodes are
created to continue to reduce the error until one is in danger of overfitting the data. Conjugate
gradient descent is a type of backpropagation that requires only one setting. It is a method of
optimization that assumes that the best search direction for to lowest error surface starts in the
direction of steepest descent and proceeds in the direction conjugate to that taken in the previous
step.

Fuzzy ARTMAP and the probabilistic neural network are not backpropagation networks
and they demonstrate the diversity of possible neural networks. Fuzzy ARTMAP neural networks
are based on adaptive resonance theory (ART) architectures.(Carpenter, 1991) This type of neural
network uses feedback and competition to self-organize stable recognition codes in real time in
response to arbitrary sequences of input patterns. The probabilistic neural network (PNN),(Specht,
1990) is a neural realization of kernel density estimation techniques. PNNs have been found to
achieve performance similar to backpropagation neural networks, but with many orders of
magnitude less training time. The PNN is a feed-forward network with two hidden layers.
Normally each node of the first hidden layer corresponds to a single training case, and computes
the similarity (in predictive variables) between that training case and the current input case. The
second hidden layer and the output layer each contain one node for each possible outcome,
computing first the estimated probability of the current predictive-variable values given each
outcome, and then the estimated probability of each outcome given the predictive-variable values.

In medical research, the most commonly used artificial neural networks (ANN) are
multilayer perceptrons that use backpropagation training. Backpropagation consists of fitting the
parameters (weights) of the model by a criterion function, usually squared error or maximum
likelihood, using a gradient optimization method. In backpropagation artificial neural networks, the
error (the difference between the predicted outcome and the true outcome) is propagated back from
the output to the connection weights in order to adjust the weights in the direction of minimum
error. (For a more detailed description of artificial neural networks see: Burke, 1997a; Cross,
1995). The artificial neural network employed in this research is composed of three interconnected
layers of nodes: an input layer with each input node corresponding to a patient variable, a hidden
layer, and an output layer. All nodes after the input layer sum the inputs to them and use a transfer
function (also known as an activation function) to send the information to the adjacent layer nodes.
The transfer function is usually a sigmoid function such as the logistic. The connections between
the nodes have adjustable weights that specify the extent to which the output of one node will be
reflected in the activity of the adjacent layer nodes. These weights, along with the connections
among the nodes, determine the output of the network. For a one hidden layer network with input
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xk, hidden units vi, output units oi, weights from input to hidden units wjk, weights from hidden
units to output units wij, and transfer function g, the output of the network is given by

0; = ZWyg (Z WpXy — ¢j)_ 0; ¢y

where ¢ and 0 are bias terms at hidden unit j, and output unit i. The network implements a set of
functions 0j=F;{xk)} for input variables xk to output variables o;. The weights and thus the
functions F; are to be estimated by minimizing a cost function. A common cost function is a
measure of squared error given by

B(w) = Sl¢" -0l @

Where & is the observed output for output unit i with pattern . Other cost functions include the
negative likelihood of a model. The usual learning rule for the weights of the network is gradient
descent, given by

AW, = 772 6;Vy,  where & =g (K¢ —0f] (3)

u
The usual artificial neural network uses backpropagation training, the maximum likelihood criterion
function, and a gradient descent optimization method.

All outcome analyses, except for PCA, CART, cascade correlation, and conjugate gradient
descent, were performed twice. The second analysis was performed independently by a different
researcher who did not know the first researcher's results. There were no significant differences
between the two researcher's results. All results are on a test data set.

As ing and comparing statistical models; measurin C

In order to assess and compare models, it is necessary to distinguish between significance,
accuracy, and importance. Significance is the fact that it is unlikely that either a trained statistical
method (i.e., a statistical model) or a predictive factor' predictions are due to chance (e.g., the chi-
square test). Significance is not necessarily accuracy. Accuracy is the association between the
model's outcome predictions and the test population's known outcome. The importance of a factor
or a model is based on whether the model or the factor possesses sufficient accuracy to be useful in
answering a particular clinical question. Finally, the assessment of model or factor significance,
accuracy, and importance must be based on test data set results, not on training data set results.

There are several approaches to assessing the accuracy of a multivariate model and for
comparing multivariate models (e.g., Goodman and Kruskall's Gamma, Kendall's Tau). The best
method currently in use is the area under the receiver operating characteristic curve. The area under
the receiver operating characteristic curve (Az) is the measure of predictive accuracy used to assess
the performance of the artificial neural networks.(Swets, 1996) It can be used to assess and
compare the adequacy of statistical models. Az can be directly calculated by Somer's D (Somer,
1962) or it can be approximated by its trapezoidal area.(Bamber, 1975) The area under the curve is
a nonparametric measure of discrimination. The receiver operating characteristic area is
independent of both the prior probability of each outcome and the threshold cutoff for
categorization. Its computation requires only that the prediction method produce an ordinally-scaled
relative predictive score. In terms of mortality, the receiver operating characteristic area estimates
the probability that the prediction method will assign a higher mortality score to the patient who
died than to the patient who lived. The receiver operating characteristic area varies from zero to
one. When the predictions are unrelated to survival, the score is .5, indicating chance accuracy.
The farther the score is from .5 the better, on average, the prediction method is at predicting which
of the two patients will be alive. Significant differences in the receiver operating characteristic areas
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between two models can be tested following Hanley and McNeil (1982), by calculating their
variances, or by the bootstrap method (Efron, 1979).

Results

The goal of this research is the creation of a clinical decision support system for women newly
diagnosed with breast cancer. In order to create this system we needed to evaluate prognostic
factors, develop a breast cancer prognostic model, and the implement a system that can be used
clinically.

Prognostic factors and outcomes

We have created a taxonomy of prognostic factors in breast cancer. The taxonomy was
based on levels of analysis: demographic, anatomic/cellular, and molecular genetic. In addition, we
collected, described, and cited the primary sources for the major breast cancer prognostic factors,
of which there are over 76 at the current time (with a new putative prognostic factor reported
almost every month).(Burke, 1995a) In addition, work is continuing on the book: "Burke HB,
Henson DE. Prognostic Factors and Systems in Cancer. Kluwer Academic Publishers."

Histologic grade is not a part of the TNM staging system but is widely used to assess
severity of illness at diagnosis. We assessed the ability of grade to predict five year survival and
found that, tumor size is a stronger predictor and that it does not increase predictive accuracy when
added to tumor size.(Burke, 1997b)

Mammographic early detection of breast cancer is reducing the usefulness of the TNM
staging system because most tumors detected by mammography are small and few women have
involved lymph nodes or distant metastases. Providing an accurate prognosis in early-detected
breast cancer is a critical problem. Can new molecular-genetic prognostic factors take over the
predictive burden from the TNM in these women? We assessed the traditional prognostic factors
(TNM variables, age, estrogen and progesterone receptor status, histology), and the molecular
genetic factors p53 and erbB-2 in 260 women with early detected disease. We performed this
analysis in conjunction with describing the proper way to assess therapy-specific prognostic
factors. Although the results were somewhat complex, a fair summary would be that for women
with small tumors and no metastases, p53 and erbB-2 demonstrated an improved predictive
accuracy. Five and ten year survival accuracy went from chance, Az = 0.5, to between 0.75 and
0.85 (depending of the analysis). These results have important implications for node-negative
women and for creating clinical trial populations. Although our results should be interpreted
cautiously because of the number of cases, they suggest that molecular genetic prognostic factors,
if properly used, will play an important role in breast cancer outcome prediction.(Burke, 1998a)

We have found that for predicting five year breast cancer-specific survival, using currently
collected prognostic factors and an overall 30% five-year breast cancer-specific mortality rate,
approximately 2,300 patients are required to attain maximum accuracy. Adding more cases does
not provide any improvement in prediction accuracy.

There are two types of recurrence analyses; predicting recurrence based on data at
discovery, and predicting survival based on there having been a recurrence. We are primarily
interested in predicting recurrence at discovery. In other words, at this time, we are interested in
using recurrence as an end-point rather than as a prognostic factor for survival. The accuracy (area
under the receiver operating characteristic curve) of the probability of recurrence predictions at
three, four and five years, for those women who are alive at each time period, is .731, .714, and
701, respectively. We can make two observations regarding these results. (1) Based on our
analysis of five year breast cancer-specific survival, predicting recurrence from data collected at the
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discovery of disease is less accurate than predicting survival from the same data. (2) Predictive
accuracy declines as the prediction extends further into the future.

Specimen banks are an important part of prognostic factor research. Two issues are central
to the evaluation of prognostic factors. The first is the time from diagnosis to the analysis of
outcomes (e.g., mortality). The longer this interval the longer the prediction time interval. To
provide, for example, ten year survival predictions a patient population must be followed for ten
years. The ten year information is used to assess prognostic factor predictive accuracy and to
provide ten year outcome predictions to future patients. The second issue is the accrual of a
sufficient number of outcomes so that the assessment of the factor is statistically reliable. Reliable
means that a similar result would be observed if the analysis were repeated. A human specimen
bank that contains abnormal and normal tissue, white cells, serum and plasma facilitates prognostic
factor research because it eliminates the waiting time problem and the outcome accrual problem by
collecting specimens from a defined patient population and following the patients for a sufficient
number of years. When a new putative prognostic factor is discovered the stored material can be
used to immediately assess its predictive power.(Burke, 1998b)

Time plays an important role in outcome prediction. There are two kinds of time related to
prognostic factors. The first is the value of the factor in predicting a future outcome. For example,
the accuracy of a factor in predicting five or ten year survival (discussed above). The second type
of time is the predictive value of a factor collected over time. In other words, does the predictive
value of the factor change over historical time so that, for example, tumor size is less predictive for
women today than it was for women 20 years ago. In collaboration with investigators in Finland
we have shown the prognostic value of a factor changes over both types of time. (Lundin M,
Lundin J, Burke HB, Toikkanen S, Liisa P, Heikki J. The role of time in breast cancer outcome
prediction. Submitted for publication.)

Survival Models

The Kaplan-Meier method (Kaplan, 1958) is a descriptive method for prediction over time
based on covariate "bins". Bins can range from one, all patients, to a bin for each covariate or level
of covariate. The Kaplan-Meier can accommodate censored cases, and, like most methods that
accommodate censoring, its accuracy can suffer as censoring increases because there are fewer
cases to base prediction upon. The Kaplan-Meier can be less accurate than inferential models
because it assumes independence, whereas most inferential models only assume conditional
independence (any dependence is explained by the covariates). The Kaplan-Meier's problems are
those of a bin model, including; an exponential increase in the number of bins as the number of
covariates increase, it loses information by requiring that continuous variables be cut into ranges,
and there is no optimization strategy for finding the most accurate combination of bins.

The Cox proportional hazards model (Cox, 1972) is a linear effects model. It estimates the
importance of each covariate, and it handles censored cases. It assumes proportional hazards and it
does not provide a survival curve without the imputation of a baseline survival curve.

We began our comparison of the Cox by examining whether breast cancer violates the
proportional hazards assumption of the model. Proportional hazards methods include the Cox
(1972), and less commonly the Weibull or exponential distributions (Evans, 1993). Proportional
hazards methods assume that the hazard of each patient is proportional to the hazards of all the
other patients and that a individual patient's hazard is related to that patient's relative risk. The Cox
model does not create survival curves. For Cox-related survival curves a baseline hazard must be
introduced (Breslow-Cox estimates; Breslow, 1974). Some researchers incorrectly believe that
only regression methods that assume proportional hazards can deal with censoring, but a
multiinterval regression model that drops patients during the interval in which they are censored is
capable of dealing with censoring. It is always vital to test the proportional hazards assumption
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when using a regression method that relies on it. There are several methods for assessing
proportional hazards violation, including Schoenfeld's partial residuals (Schoenfeld, 1982) and the
log hazard ratio as a function of time (Gore, 1986). We have created a method somewhat similar to
Gore. We construct a Cox model, divide the time into sub-intervals, and assess the accuracy of the
model for each sub-interval. If proportional hazards holds, accuracy should be constant across
sub-intervals. Results for breast cancer are shown below. :

TABLE. Area under the receiver operating characteristic (Az) for two Cox models; breast cancer
(five one-year intervals) N = 1,222 and melanoma (three six-month intervals) N = 60.

Model/Interval 1 2 3 4 5

Breast (SE) 734 (.057) 735 (.036) 758 (.038) .773 (.040) .693 (.041)

Area under the curve for Cox model evaluated at five time intervals
0.85

=] Cox

0.8 =~

N 0.75

0.7 =

0.65 T 1 T T

Time Interval

Because the Az values are not constant across the sub-intervals, proportional hazards does not hold
for breast cancer.

Faraggi and Simon (1994) nest an artificial neural network in the Cox proportional hazards
model, replacing the linear combination of covariates with an artificial neural network. This solves
the problem of capturing nonlinear and interactional covariates, while handling censored cases. As
an artificial neural network generalization of the Cox proportional hazards model, it retains the
assumption of proportional hazards and it does not provide a survival curve unless a baseline
survival curve is imputed.

The simplest approach to a full artificial neural network implementation of a probability of
survival over time model is to create a artificial neural network for each time interval. Data would
be time interval specific; the censored cases would be dropped from the analysis, i.e., not included
in the subsequent time interval artificial neural networks, at the time of censoring. Survival
probabilities can be generated by each time-interval-specific artificial neural network, and they can
be multiplied in succession to provide a survival prediction for each time interval. A problem with
this approach is that the information contained in variables over several time periods is lost,

~ because each time period is a separate artificial neural network. One artificial neural network
spanning all time intervals partially solves this problem. This approach, with a two layer neural
network, is similar to a series of logistic regression models, one for each time interval. (Cox vs.
LR comparison here).

Ravdin and Clark (1992), provide the earliest attempt to create a probability of survival
artificial neural network. Employing a commercial artificial neural network, Ravdin and Clark
generate a prognostic index, which is roughly proportional to the survival probability, which they
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stratify into four groups by predicted prognosis. They code time as an input variable, each patient's
data is reproduced for each time interval, in order to represent censored outcomes. Thus, for four
time intervals there are four representations of each patient, with each representation differing only
in its time interval failure information, i.e., outcome status (alive/dead), and censored status.
Ravdin and Clark drop censored cases from the analysis at the time interval at which censoring
occurs. Since only alive or dead remain in the analysis, as time continues, the ratio of dead to alive
increases dramatically, resulting in too many patients dead and too few patients alive in the later
time intervals. In order to rectify this imbalance, at each time interval the authors use the Kaplan-
Meier product-limit estimate to determine the overall ratio of survivor to nonsurvivor. They use this
ratio, based on the independence assumption, to determine the number of dead to randomly remove
from the study in later time intervals. But the Kaplan-Meier estimate is itself sensitive to censoring,
and the independence assumption must be justified. When faced with this situation, a better
response might be to use the predictors to determine who to remove from the study. Also,
throwing out patients removes predictive information from the study.

Liestold and Anderson (1994) create an artificial neural network that estimates the
probability of survival over time. Their model creates one artificial neural network, and represents
each time interval as a separate output node. Each output node generates a conditional survival
probability. A possible problem with generating conditional survival probabilities is that the error
of each prediction (variance) may accumulate when the predictions are multiplied together to create
the survival estimate over time. Further, there is the problem of equal training of the nodes
resulting in unequal accuracy, as some nodes are overfitted and some underfitted. Although their
model retains the proportional hazards assumption, they suggest stratifying the covariates in order
to remove this assumption. The authors go on to add a penalty term to the model, to penalize for
deviations from proportionality.

We have compared statistical method to artificial neural networks in terms of five year
breast cancer-specific survival. Principle components analysis is the linear combination of
predictor variables. The logistic regression analysis is performed in a stepwise manner, without
interaction terms, using the statistical program S-PLUS (S-PLUS, Seattle, WA) with cubic spline
terms for age.(Smith, 1979) Two types of Classification and Regression Tree (CART) analyses are
performed using S-PLUS. The first was a 9-node pruned tree (with 10-fold cross validation on the
deviance), and the second was a shrunk tree with 13.7 effective nodes. The ANNs were described
above.(Burke, 1997a)

FIVE YEAR SURVIVAL PREDICTION ACCURACY

PREDICTION MODEL ACCUI}AC SPECIFICATIONS
Y
pTNM Stages 720 @,1ITA,IB,IIIA,IIIB,IV
Principal Components Analysis 714 one scaling iteration
CART, pruned 753 9 nodes
CART, shrunk 762 13.7 nodes
Stepwise Logistic Regression a76 cubic splines
Fuzzy ARTMAP NN** 738 54-F2a, 128-1
Cascade Correlation NN 761 54-21-1
Conjugate Gradient Descent NN 774 54-30-1
Probabilistic NN 777 bandwidth = 16s
Backpropagation NN .784 , 54-5-1

* - . e
The area under the curve of the receiver operating characteristic.
** NN, neural network.
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We extended our comparison of the TNM staging system and the ANN from 5 year survival to 10
year survival.

TEN YEAR SURVIVAL PREDICTION ACCURACY

PREDICTION MODEL ACCURACY* SPECIFICATIONS
TNM Stages .692 @,1I1A,IIB,IIIA,IIIB,IV
Artificial Neural Network 7308 3-5-1

* The receiver operating characteristic area. '

§ p<.01

We found that the predictors collected at disease discovery are less accurate in predicting 10 year

survival than 5 year survival. Five year survival accuracy for the TNM staging system was 0.720
and for the artificial neural network, 0.784 and the corresponding ten year survival accuracy was

0.692 and 0.730.

Artificial neural networks are a general regression method that do not assume proportional-
hazards and can capture nonlinearity and complex interactions (Burke, 1994, 1995a). Multiinterval
artificial neural networks can handle censoring in the same way that multiinterval logistic
regression models handle censoring. It seems clear that proportional hazards is probably not
appropriate for breast cancer or lung cancer (results not published).

Accuracy

The accuracy of predicted survival curves, with respect to the actual times of death (or of
censoring) of the patients in a data set, can be evaluated in terms of accuracy's of the survival or
hazard probabilities at each point in time. The accuracy of these component probability predictions
should be assessed using a (strictly) proper scoring rule, such as the quadratic (e.g. Brier) or
logarithmic score, whose expectation is maximized by (and only by) predicting the true probability
(Winkler, 1969; Savage, 1971). Our recent work has shown that such scoring rules are in fact
averages of actual decision-making loss or regret (Rosen, 1995a, 1996). These averages are over
the potential decision problems in which the probability predictions might be used, each such
decision problem being characterized by the regret associated with a false positive vs. that
associated with a false negative. This theory also suggests an ROC curve alternative whose area is
a proper scoring rule.

We want a measure of the extent to which the predictions are in the correct relative order,
regardless of their numerical values. Such indices (Somers' Dyx, c index, etc.) are often called
measures of ordinal discrimination, or of concordance (the number of pairs of predictions in the
correct order), and in the dichotomous-outcome case, can arise from the empirical ROC curve.
When a proper scoring rule is used to evaluate the overall correspondence of the predictions with
the outcome, we wish to know how much of this inaccuracy could be due to miscalibration, and
how much is unequivocally due to mis-ordering. This question is difficult to answer using
concordance or ROC-based indices without strong parametric assumptions. We have introduced
(Rosen 1994; Rosen,1995b) a procedure identifying an unequivocal misdiscrimination component
in any proper score, including logarithmic (binomial log-likelihood or Kullback-Liebler). The
procedure calibrates the predictions on a given data set so that all proper scores are simultaneously
optimized on that data subject to the constraint that the ordering of the predictions not change
(though ties can be produced). This constraint is very strong; without it such a calibration could
often achieve a perfect score. The resulting score of interest (log-likelihood, Brier, etc.) on these
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self-calibrated predictions tells how much of the original score cannot possibly be improved by any
order-preserving re-calibration, and is thus an index of ordinal discrimination.

Missing Data

Most data analyses either drop cases with missing data or impute some measure of central
tendency for the missing data. Dropping cases has at least two negative effects: the remaining data
may be biased, and it reduces the amount of data available for analysis. It may be possible to
impute a central tendency value for missing data. But there are a number of statistical problems
with the imputation of a central tendency, especially when there are many cases with missing data
or when the important predictor variables contain much of the missing data..

The current cancer prediction system, the TNM staging system, does not provide a stage if
one of the TNM variable is missing, nor does it provide guidance regarding prediction with
missing variables (Beahrs, 1992).

In cancer prognostic factor research, many large data sets, both retrospective and
prospective, suffer from missing data, i.e., missing prognostic factor information (Burke, 1993,
1995b, 1995c). We estimate that 75 - 80% of cases in some national data sets contain missing
data. The usual approach to missing data is to remove the entire case, but this reduction in data set
size, combined with the further reduction caused by splitting the data set into training and testing
subsets, can significantly reduce the accuracy of statistical models. As Little and Rubin (1987)
note:

"Statistical packages typically exclude units that have missing value codes for any of the
variables involved in an analysis. This strategy is generally inappropriate, since the investigator is
usually interested in making inferences about the entire target population, rather than the portion of
the target population that would provide responses to all relevant variables in the analysis."
Moreover, when one is predicting an individual patient's outcome in a clinical situation, there is no
guarantee that values for every predictive factor will be known for that individual; clearly
"removing the case" is not an option in clinical situations. The result of a missing prognostic factor
in clinical practice is usually an ad hoc guess of prognosis. For example, in the TNM staging
system, if one of the covariates is not available no stage can be assigned, so the clinician must
guess the patient's prognosis.

The missing data problem is especially severe in small data sets, where all data is precious.
Here the problem can be enough to preclude the analysis of the data set. For example, in the Duke
University breast cancer data set, which contains several of the new molecular-genetic prognostic
factors, of the 230 cases in the data set, only 98 cases have no missing data. Given the number of
covariates and the event rate (death from breast cancer), 98 cases are not sufficient for an analysis
of these data. Because the new molecular-genetic prognostic factors are not always collected, and
because molecular-genetic prognostic factors can be very powerful predictors of survival, it is
essential that the problem of missing data be solved so that outcome prediction in cancer can
advance.

When constructing a statistical model to predict a cancer outcome, €.g. survival, missing
data (incomplete feature vectors) can cause a decrease in predictive accuracy (compared to the data
set which does not contain missing data) because: (1) the missing data itself reduces the amount of
data available to serve as a basis for prediction, and (2) the usual practice of removing cases with
missing data, which reduces sample size, and therefore accuracy, reduces the amount of usable
data to a level below that required to maintain predictive accuracy. One can never predict the true
values of the missing data, but unless there are a great many missing values for a particular
covariate, substituting values generated by an efficient method should improve prediction accuracy,
compared to removing the cases with missing data. In other words, the problem we address is
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what method best deals with missing data, allowing us to retain the rest of the patient’s data. Best
means the method that produces the least biased estimates of the missing data values. Commonly
used methods for estimating the missing values, e.g., imputing the mean covariate value or zero
for the missing data, create strong biases and should be avoided (Little, 1992;Little and Rubin,
1987).

To be more precise, there are two missing data problems. One involves covariate values
missing in the data sets used to train and test statistical prediction methods, such as logistic
regression or Cox proportional hazards. The other involves missing predictors in a clinical
situation; the patient's chart does not contain all the expected prognostic factors. For missing
values, we prefer a method that uses all the information in the data set to estimate the missing
values. This approach contrasts with, and is more accurate than, the simple insertion of a
descriptive value (usually some measure of central tendency) of the covariate (e.g., a mean or
median value) (Vamplew and Adams, 1992). .

We have developed an artificial neural network approach for solving the missing data
problem, using Normalized Radial Basis Functions. Normalized Radial Basis Functions based on
estimating the joint input-output data distribution using a network representing mixtures of many
multivariate gaussians. Normalized Radial Basis Function (NRBF) networks (Moody and Darken,
1988,1989; Poggio, 1989; Nowlan, 1990) model the output as a weighted average of an output
value associated with each hidden unit. A given hidden unit also has an associated position in the
input space, and a "width" in each input dimension specifying how fast the weighting (importance
in the weighted average) falls off in that dimension. Thus each hidden unit, or term in the model, is
radial (or ellipsoidal) in that its influence decreases in all directions from its center. This is in
contrast to conventional sigmoidal-projective neural networks, which do not use a weighted
average, and in which each hidden unit has no "center" point, but rather selects(through its input
weight vector) an arbitrary direction (linear projection) in the input space, where its contribution to
the final prediction is a sigmoidal function along this direction. Training of the NRBF is
accomplished using any of the standard neural network algorithms based on backpropagation of
errors for calculation of the gradient of the log-likelihood with respect to the parameters (weights)
of the network. An advantage of a trained NRBF (when using gaussians as the radial weighting
functions) is its ability to easily handle missing inputs during performance (i.e. prediction or
recall), since merely ignoring those input components that are missing in a given input vector is
equivalent to the correct Bayesian marginalization over the missing components.

The nonparametric form of the NRBF is known as a kernel estimator or Probabilistic
Neural Network (Rosenblatt, 1956; Parzen, 1962; Nadaraya, 1964; Watson, 1964; Specht, 1990,
1991). Here, instead of using an optimization criterion to set the parameters of the network, there
is a single hidden unit corresponding to each training case, whose location in the input space, as
well as output value, is taken directly as those input and output values defining the case. These
methods are sometimes called memory-based or case-based, since they store all the training data
but require little or no computation during training. Thus these methods are attractive where
training time is expensive but storage space during performance is not limiting, and they retain the
ability to handle missing data during performance.

The NRBF can be generalized to form a Gaussian Mixture Network (Tresp, et al., 1994,
Gharamani and Jordan, 1994) for the joint (input-output, i.e. predictor-response) probability
density. This can use basis functions with non-diagonal variance-covariance matrices, thus
incorporating some of the projective aspects of conventional sigmoidal neural networks. More
importantly, they can be trained using the maximum-joint-likelihood(probability of observed
training data inputs and outputs given parameters)criterion, enabling training on cases with
arbitrary missing data (even if every case has some missing) using the iterative Expectation and
Maximization (EM) algorithm (McKendrick, 1926; Hartly 1958; Orchard and Woodbury, 1972;
Dempster, Laird, and Rubin, 1977).

18




It has been suggested by Efron (1979) and others that, ignoring the question of missing
data, maximum-joint-likelihood estimation is less efficient than conventional maximum-likelihood
estimation (probability of observed training data outputs given training data inputs and the
parameters). Therefore, as our first missing-data method, we will examine the use of mixture
networks to perform multiple imputation of missing values, as a preprocessor to be followed by a
separate conventional feedforward neural network for prediction using these imputed values. A
nonparametric(memory-based) form of this method has been proposed (Tresp, 1995) but has the
disadvantage of requiring that a good fraction of the training cases are complete, i.e. have no
missing inputs.

We wish to train a feedforward projective-sigmoidal neural network (MLP) on breast
cancer outcomes data missing both binary and continuous input variable values. A Gaussian-
Bernoulli mixture model is trained on the data (using EM). It then performs stochastic imputation
(filling in) of the missing values, as a preprocessor to the MLP. In order to compare predictive
accuracy when the training data are complete vs. incomplete/imputed, we use only complete cases
from a natural data set, but artificially remove 80% of their input data values. Very little difference
is observed in the comparison, suggesting that the mixture model is quite effective here, despite the
fact that more than 99% of the cases/instances had some missing value(s). The mixture model can
be used both for output/outcome prediction by a trained MLP and for the training process itself.

The problem of missing (incomplete) data is ubiquitous in clinical medicine, both during
model development and training/fitting, and during prediction/performance/recall on new cases by
the final fixed model. In the present work we employ finite mixture (Titterington, Smith &
Makov, 1985) models. We will refer to these models as mixture networks, since they have a
network interpretation (nodes, connections, and local computation) and Gaussian mixtures can be
viewed as generalizations of normalized radial basis function (NRBF) neural networks (Moody
& Darken, 1988; Moody & Darken, 1989; Poggio & Girosi, 1989; Poggio & Girosi, 1990;
Nowlan, 1990; Nowlan, 1991).

Mixture networks have been successfully applied to missing-data problems (Ghahramani
& Jordan, 1994; Tresp, Ahmand & Neuneier, 1994). They are very flexible models that can be
used in "semi-parametric” style, i.e. making them large enough to capture the predictive complexity
of a phenomenon, without necessarily determining the significance or meaning of the model terms.
Thus they require relatively little operator intervention in their use. They are also able to handle
several types of variables together in a multivariate problem without resorting to ad hoc
combination of disparate models/methods.

The NRBF is a model for the regression (conditional expectation or mean of y given x )
function defined by an average of parameters 4’ (using an underbar to indicate a vector),
weighted by Gaussians (i.e. normal pdfs) and their mixture parameters{y;} as

2 Y NG 5)
E{ylx}=L5
2 VNG5

j=1

N(x; 1;,s;) is a Gaussian with the specified parameter vectors of means 4] and variances s;
(diagonal variance-covariance matrices are assumed) for the jth term in the model. The x
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superscripts indicate that these parameters correspond to x components, while the notation u; will

become clear in the next paragraph. The NRBF model can be viewed as a parametric version of
the nonparametric kernel (Rosenblatt, 1956; Parzen, 1962) regression estimator as first proposed
by Nadaraya (1964) and Watson (1964). Training the NRBF can be done using maximum-
conditional-likelihood of the outputs given the inputs.

A Gaussian mixture network is a model for the full joint probability density of a vector z of
unrestricted-real-valued variables, given by '

p@)= Y 1 N@Hs))

j=1

where if we identify the variables as z = (x, y), and the means and variances of the mixture terms
as p; = (], u]) and s; = (s,s}) respectively, we can obtain the NRBF regression formula above.
Although within each mixture component (term) the variables are independent, dependencies are
introduced upon summing these in the mixture. Because there are the additional parameters s; to
be estimated, maximum-likelihood estimation for this model must typically use the unconditional
joint likelihood of all of the variables, not distinguishing between "Inputs” and "outputs” during
training.

A Bernoulli mixture model consists of a sum of terms, each representing a product of
Bernoulli distributions (i.e. binomial distribution with a single draw) for the inputs. This model is
used when the variables are binary (dichotomous). Ghahramani & Jordan (1994) studied separate
Gaussian and Bernoulli mixture models for all-continuous and all-binary tasks, respectively, and
mentioned that these and other distributions can be combined within each term of a mixture model
when the variables are of different types (dichotomous, real-valued, and others) within the same
task. A Gaussian-Bernoulli mixture model is defined by

pe.D) =Y ¥,N(G ;.5))BG ;)

j=1

where with z = (¢,b) we have partitioned zinto vectors of continuous and binary components, and
B(b;a)) is a product Ha ;.40 Of univariate Bernoulli distributions with Bernoulli/binomial

parameter o, (the jth model term's predicted probability that binary variable b, =1) and its
complement @, =1-0;.

8!

A mixture network can predict any variable (input or output) from any combination of
others. For example, Figure 1 shows how a two-variable Gaussian mixture can predict either
variable from the other (just expectations in this case). Even if the same variable is always to be
considered the output or response whose prediction is of direct interest, this property is closely
related to the fact that the model is able to ignore any predictive variables whose values are
unknown in a given observation.
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In this work we estimate the maximum-likelihood parameter vector of the mixture networks
using the EM algorithm (Dempster, Laird & Rubin, 1977), an iterative procedure alternating
between E (expectation) and M (maximization) steps. The E-step is derived for a particular model
by taking the expectation over the missing values of the log likelihood, plugging in the previous
iteration's values of the parameters where needed only in the coefficients used to form the
expectation. (The log likelihood for a data set for a model and parameter set is just the sum of the

log p(z) over for every case/instance.) The M-step is to re-estimate the parameters so as to

maximize that expected-log likelihood. In some models EM is equivalent to repeatedly doing single
imputation of the expectation of the missing data values themselves in the E-step. Some authors
appear to believe that this is true in general; mixture models described in the present paper are
among the counterexamples to that belief.

A learned/fitted mixture network can be used directly to make predictions of the output
(response) variable of interest, but here we chose to use it as a preprocessing module, imputing
(filling in predicted values) (Little & Rubin, 1987) the missing input (predictor) values for use in
a multilayer perceptron (MLP) neural net. This decision was based in part on some preliminary
comparisons we performed between the two approaches on our data set. Our imputation was
stochastic: the missing value predictions were drawn from the trained mixture network's generative
distribution given (conditioned on) the non-missing inputs, not for example as a mean or mode of
that conditional distribution.

An advantage of an imputation approach is that one can continue to use whatever
predictive model/method you have found to perform best in the data domain of interest, while
using the mixture network only to allow your method to be used in the presence of missing data,
even if it is not able to handle missing data well itself.

The models considered in this paper assume that the data are missing at random (MAR)
(Little & Rubin, 1987), meaning (loosely) that the probability of a given value being missing does
not depend on that value itself.

Method

We implemented the mixture networks in Xlisp-Stat (Tierney, 1990), a free multi-platform
statistical package whose byte-compiled user code can run faster than that of some other
comparable environments. We may be able to make our research code available to others.

We report experiments conducted using subsets of the Commission on Cancer Patient Care
Evaluation (PCE) breast cancer data. The PCE data were collected by the American College of
Surgeons, jointly sponsored with the American Cancer Society, by requesting data from individual
tumor registries on the first 25 cases of first diagnosis breast cancer (among others) seen in 1985 at
each American College of Surgeons-accredited hospital in the United States.

The purpose of the present work is to determine the performance of the mixture model
when almost every case has at least one missing value, not to perform a complete analysis of the
PCE breast cancer data.

In the first experiment, we test our Bernoulli mixture network using only three binary
inputs (predictive variables) and a binary outcome. The input features were tumor size >2cm
(1=true, O=false), lymph node status (1=positive, O=negative), and distant metastases
(1=present, O=absent). The binarized outcome was simply 5 year status (1=alive, O=dead). We
started with 8,000 cases not having missing values in any of the four variables. This data set was
randomly split into three subsets: training data (2,000 cases), generalization/convergence
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monitoring for the mixture model (2,000 cases), and a one-time final test set (4,000 cases) for the
MLP.

We trained an MLP on the training set cases. The neural network software (NevProp 2)
automatically split off half (1,000) of these cases and used them internally for early stopping, a
method for automatic regularization/shrinkage to avoid overfitting. The architecture had three input
units, two symmetric (logistic - 1/2) sigmoid hidden units, and a single asymmetric (logistic)
sigmoid output unit. There was full feedforward inter-layer connectivity, including skips from
input to output. Weights were initialized to small values in [-.001 , .001] in order for early
stopping to be effective. The training criterion was cross-entropy, optimized by batch gradient
descent with an adaptive global learning rate. Weight decay, momentum, and sigmoid-prime offset
were all set to small values (.001).

After training, we noted as performance measures the quadratic (squared error per case)
and logarithmic (negative log-likelihood per case) proper probability scores on the independent test
set (4,000 cases). We then artificially removed 80% of the predictor values in the training set
completely at random (MCAR), so that only 20% of the original data values remained. Only about
a dozen of the 2,000 training cases remained complete; the others had at least one missing value.

We used the Bernoulli mixture network with only two terms in the mixture and fixed
equal mixing probabilities. We used EM to find the maximum-likelihood parameter vector for this
model, and then performed a single but stochastic imputation from the conditional distribution of

-each missing value given the nonmissing predictors in that case and the single parameter vector. It
was not deemed necessary to do more than one imputation per case for this experiment. The
resulting data set (80% imputed predictors) was again used to train the MLP, and the final
performance on the 4,000-case complete test set was noted. Thus this is a test of the ability to train
a neural network with imputed data, rather than the ability to make accurate predictions when data
must be imputed during performance/recall/testing.

For the second experiment we implemented EM for the Gaussian-Bernoulli mixture model

described earlier. The Gaussians' standard deviation parameter (/var) were not allowed to fall
below a value of 0.001, in order to prevent the model from falling into a likelihood singularity
where one of the terms is trying to fit a single data point exactly. We repeated the procedures of the
first experiment, but this time using the original numerical values of the tumor size and log (1 +
number of lymph nodes positive ) predictors, both of which ranged from about zero to about
four in the data and had been binarized only for the first experiment.

The result of using the MLP on the original complete binary data are shown in Table 1
under the column heading MLPFUL. Note that both the quadratic and logarithmic scores are
always nonnegative with zero being the best possible value. FRQALIV shows the frequency of the
response variable being equal to 1 (i.e. status at 5 years = ALIVE) in each data set, and PRDFRQ
shows as a baseline the result of naively predicting this frequency for all cases in the data set,
regardless of their input values.

After randomly removing 80% of the training set data elements, we use the mixture model
to stochastically impute these for the MLP, and the results are given in the column labeled MLP -
.8 . We see that even with a huge fraction of the data missing, the results are not much worse than
with all the original data.
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TABLE 1. Test-set results from first experiment: binary data.

(per case) FREQALIV PRDFRQ MLPFUL MLP-.8
Squared error .808 1355 .138 .139
log likelihood .808 489 436 443

TABLE 2. Test-set results from first experiment: continuous and binary data.

(per case) FREQALIV PRDFRQ MLPFUL [ MILP-8 |
Squared error .808 155 133 135
log likelihood .808 489 427 434

" Table 2 shows the results of the second experiment, where two of the predictors are now
continuous. Though the 8000 original cases are the same ones as in the first experiment, they
happened to be randomly split into train and test subsets independently for the two experiments.
Again, the test set performance does not worsen drastically upon removing 80% of the training set
data values.

We conclude that for our data sets, the mixture networks allow us to handle well a very
large proportion of missing values in the training data. Of course this could not have been the case
if the remaining 20% did not contain sufficient information in comparison to the complete data set;
thus our 2000 cases presumably contained a great deal of redundant information. But even given
this redundancy, one could easily have lost nearly all predictive ability depending on the methods
employed. For example, dropping incomplete cases from the training data was clearly not viable
here. The simplest methods, such as imputing the single overall (data set-wide) mode of a binary
variable where ever it is missing, could have grossly distorted the dependencies in the data
distribution, so as to overwhelm the valid information in the much smaller collection of non-
missing values.

The imputation approach may sometimes produce results superior to direct prediction of the
outcome by the single mixture network, if the imputed data are used in a response-predictive type
of model such as the original NRBF, generalized linear models (GLiM), multilayer perceptrons
(MLP), etc. The latter models are estimated by maximum conditional or predictive likelihood,
where the (vector) parameter 6 is chosen to maximize the likelihood of the y data conditional on
the x data, i.e. p(D, 1D,;0) According to Efron (1979) and others, these often make better

predictions because they are more robust to violations of distributional assumptions, since these
assumptions are less stringent than in the case of full joint probability models estimated by full

maximum likelihood p(D,,D,;!6).

In addition, projective models such as MLPs, GLiMs, and projection pursuit regression are
often seen to perform better in practice, especially with many predictor variables, than their "local
radial" and mixture cousins. There is at least one theoretical analysis (Barron, 1994) explaining
how the MLP can perhaps perform well in spite of the curse of dimensionality; we are unaware of
any similar results for mixture/radial models. :

Generating stochastic imputations from the predictive distribution of the missing values
given the nonmissing values and the single maximum-likelihood parameter vector is not a proper
Bayesian stochastic imputation (Little & Rubin, 1987) because we do not perform the additional
computation required to take into account the uncertainty in (i.e. posterior distribution of) the
parameter vector itself. However, it should still be better to stochastically account for (some of) the
uncertainty in each missing value itself, rather than deterministically imputing a single central
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tendency (mean or mode) for the value once given the non-missing predictors, so the method we
used can be viewed as a pragmatic compromise between simpler multivariate-predictive methods
and a rigorous Bayesian method. The data augmentation algorithm of Schafer (1995) is an example
of such a Bayesian method employing stochastic simulation, and can be applied to mixture
networks as a relatively straightforward extension of the EM implementation, often initialized with
the parameter vector found by EM. Neal (1991) has implemented and studied certain priors and
stochastic simulation methods for discrete data.

Recent work on mixtures of factor analyses (Ghahramani & Hinton, 1996) may be one
way to permit relaxation of the independence-within-term (i.e. diagonal covariance matrix)
constraint on the continuous variables even in high dimension where a full covariance matrix
(general multivariate Gaussian) cannot be used. This also makes the overall method partly
projective, bringing some its properties closer to those of, e.g., the MLP.

Implementation of Clinical Decision Support System

Because of all the work we had done on outcome prediction accuracy, we were interested
in how good clinicians are at predicting patient outcomes. Research has suggested that physicians
are not able to accurately assess breast cancer survival. (Laprinzi, 1994) We performed a small
survey that assessed the oncologists' ability to predict five year breast cancer specific survival.
Oncologists were asked to estimate ten patient's five year breast cancer specific survival. (Survey
instrument is presented in Appendix). The mean of the oncologists' predictions for each patient
was compared with the patient's actual survival. (see Figure below)

j v
Actual

Probability of
survival 0.5

Patients 1 - 10
Oncologists tended to be pessimistic regarding breast cancer patient prognosis. Since the therapy

for patients with poor prognoses is different therapy from that of patients with a good prognosis,
this finding (unpublished results) has important implications for patient care.
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The development of the clinical decision support system on the Windows platform has been
very demanding. We began by developing the artificial neural network and missing data algorithms
in interpreted languages (e.g., XLISP STAT). We then rewrote the algorithms in a complied
language (Borland C++ and later Visual C++). We trained the missing data algorithm to perform
multiple imputation on the SEER breast cancer data set. Using these data we trained our artificial
neural network to predict five year breast cancer survival. We then linked the trained artificial
neural network program to the trained missing data program so that if a patient does not have all
her prognostic factors the missing data algorithm will automatically fill-in the missing factor(s) and
the patient will still receive a survival prediction. The prediction she receives will not be as accurate
as one that contains all the prognostic factors but it is better than not providing any prediction.

While we were developing the above algorithms and training the models we also began
developing the input and output graphical user interfaces (GUI). The GUIs were first written in
C++. But we found that there were problems with controlling the placement of information and the
printing of the C++ screens. The problem was one of position, we could not obtain position-
invariance across different computers and printer drivers. We rewrote the GUIs in Visual Basic
and this resolved the printer problem. The input screen is shown below.

« Patient Data

Patient Name [

|
Patient ID | ] Tumor Size |:|
Institution I | Lymph Nodes Positive l__———l
Date | l Lymph Nodes Examined :
Physician I ] Distant Metastasis L——:I
Cancer Type l I Estrogen Receptor [:’
|

Prediction Type l

Progesterone Receptor :
Menopausal Status :‘
s ]

Lymph Nodes pTNM |:|
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The input screen is linked to an Oracle data base and to both our ANN and missing data
models. When patient information is entered it goes to the data base for storage, the missing data
algorithm to fill-in missing data fields (this information is also sent to the ANN), and to the ANN
for survival predictions. The output screen was more difficult to implement. Drawing curves in
exact locations is relatively difficult to do in C++ and this took a great deal of time to implement.
We are currently rewriting the input and output GUISs in Java. The output screen is shown below.

Patient Name: Variables:
Patient ID: Tumor :
Institution: T Size: 3 LN Pos: 1
Date: LN Exam: 15 Mets: n
Physician: ER: ‘ y PR: y
Cancer Type: Menopausal: vy Grade: 2
Prediction Type: Age: 67 LN pTNM: o2
Year ANN Prediction P 1.0 ———
r
0 1.000 © 0.8
b
1 0.993 a
. b 0.6
i
2 0.984 1 0.4
3 0.967 i
t 0.2
4 0.94 Y
- 0.0
5 0.9 0 1 2 3 4 5
Year
TNM Stage: IIIA Prediction: 0.595 -

During the developmcnf of the GUIs we consulted with clinicians (oncologists,
pathologists, surgeons, radiation oncologists) to determine the optimal ergonomic approach.

We have demonstration projects with New York Medical College and Duke University
Medical Center. We had hoped to have, by now, a large data set from Duke with all therapies
represented and with long term follow-up. We have spent a great deal of time working with Duke
and its cancer registry on this data set. The problems*we have encountered included the lack of
complete TNM data at the tumor registry, the need to go to the patient's charts for treatment
information, and a paucity of recent follow-up information. We have used a data set with just
surgery as the treatment to test our system. We are continning to work with Duke and will create a
multi-treatment clinical decision support system when the data becomes available.

With the surgical data set we have learned a great deal. The most important finding is that,
generally, physicians will not directly interact with the system. There are a number of reasons for
this finding. One is that many physicians are not interested in, or able to, interact with computers.
A second reason is that physicians are very busy and do not want to take the time to interact with
the system. This includes the physician not acquiring and entering the patient's prognostic factors.
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The way we have solved this problem is to have ancillary personnel enter the factors, print out the
patient's survival probability report, and place the report in the patient's chart.

Once in the chart, the report is always used. We have found that both the physician and the
patient value objective clinical information that is patient-specific. In our continuing survey of
physicians and patients, the report is always rated highly. Most comments are that it is valuable and
that it strengthens the physician-patient relationship. We have not had the opportunity observe the
benefit of the reports in decision-making since all women receive surgery. When the data set with
adjuvant treatments becomes available we will be able to provide treatment comparisons. For
example, which women would benefit from the combination of chemotherapy and hormonal
treatment.

Tasks added to the project

(1) We computerized the TNM staging system and integrated its predictions into the
prognostic system.

(2) We completed our comparison of the two national breast cancer data bases, the National
Cancer Data Base (NCDB) and its associated Patient Care Evaluation (PCE), and the Surveillance,
Epidemiology, and End Results (SEER) data sets. We evaluated them in terms of: (i)
representativeness, is the data set an unbiased representation of the breast cancer population. (ii)
Incidence/prevalence, how good is the data set in capturing the incidence and prevalence of breast
cancer. (iii) Prognosis/outcome, how good is the data set in providing information that is useful for
predicting outcome. An overview of the results are shown below.

SEER NCDB
Representativeness good . good
Incidence/prevalence good adequate
Prognosis/outcome not acceptable adequate

Both are representative of the breast cancer population. SEER does a better job at incidence and
prevalence because it ascertains all cases in a catchment area, regardless of whether the hospital
belongs to the American College of Surgeons accreditation program, and it contains relatively little
missing data. NCDB contains a great deal of missing data. SEER can not be used for prognosis
because it does not provide therapy data due to the unreliability of their data. NCDB suffers from a
lack of follow-up, resulting in high censoring rates.

CONCLUSIONS

The current breast cancer prediction system, the pTNM staging system, is only moderately
accurate, yet the TNM variables are probably more accurate than any three variables in most
diseases. Neural networks can increase the predictive accuracy of the TNM variables beyond that
possible in the pTNM stage model and additional variables, especially molecular genetic factors,
can be added to neural networks to further increase prognostic accuracy.

The current pTNM stage system is about 44% accurate in its breast cancer five year survival
predictions. By using a neural network, and by adding variables that individually have little
prognostic value, accuracy can be increased to 56%. This is a 27% increase in accuracy, without
adding any new prognostic factors. With the addition of two new prognostic factors, p53 and
HER-2/neu, accuracy increases to 70%. This increase in predictive accuracy, from 44% with the
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pTNM model to 70% with neural networks integrating new prognostic factors, is a 60%
improvement in our ability to predict outcome.

A 60% improvement in prognostic ability is clinically important for therapy, clinical trials,
patient information, and quality assurance. (1) Therapy. It will allow the more efficient separation
of node negative women who have a poor prognosis and require additional therapy, from women
who have an excellent prognosis and require no adjuvant therapy. (2) Clinical trials. It will allow
researchers to create more homogenous patient populations. This homogeneity will decrease
interpatient variability and thus allow therapeutic trials to detect small but clinically important
differences in response to therapy; responses that before would have not been statistically
significant in prior clinical trials. Further, the increase in accuracy means that smaller patient
populations are needed for clinical trials. (3) Patient information. Women will have a more accurate
understanding of their disease, and can plan their lives accordingly. (4) Quality assurance. It will
provide a better adjustment of severity of illness than is currently possible.

Cancer is primarily a genetic disease.(Rowley, 1993) Cancer genes do not act in isolation;
oncogenes, suppresser genes, and genetic mutations cause cancer thorough the complex interaction
of the genes and their products.(Postel, 1993; Steel, 1993) A cascade of genes is required to
produce a cancer.(Lippman, 1990) Thus, we can not assume: that a gene or its product will have
an independent prognostic value before it is combined with other genes and/or their products, that
gene interactions are binary, or that there will only be a few simple genetic interactions. Further,
we not can specify in advance of the analysis what complex genetic interactions will occur. We
need to capture these complex interactions because the prognostic value of the genes and their
products can depend on their interactions.(Smith, 1993) Because neural networks can approximate
any continuous function to any degree of accuracy,(Hornik, 1989; Leshno, 1993) they can
discover these complex interactions without the requirement of a priori specification of the
important variables; the neural network will learn the variables that are important. Neural networks

are able to capture the power of nonmonotonic prognostic factors and they are efficient discoverers
of complex interactions. Neural networks can do everything that linear and logistic regression can
do, and they can do much more.

We have proposed the following criteria for selecting an enhanced prognostic system: (1) Easy
for physicians to use. (2) Provides predictions for all types of cancer. (3) Provides the most
accurate relapse and survival predictions at discovery and for every year lived for each patient. (4)
Provides group survival curves, where the grouping can be by any variable including outcome and
therapy. (5) Accommodates missing data and censored patients, and it is tolerant of noisy and
biased data. (6) Makes no a priori assumptions regarding the type of data, the distribution of the
variables, or the relationships among the variables. (7) Can test putative prognostic factors for
significance, independence, and clinical importance. (8) Accommodates treatment information in
the evaluation of prognostic factors. (9) Accommodates new putative prognostic factors without
changing the model. (10) Accommodates emerging diagnostic techniques. (11) Provides
information regarding the importance of each predictive variable. (12) Is automatic. This report is
the first step in implementing the prognostic system in the form of a clinical decision support
system.(Burke, 1993)

The system we have created is efficient, accurate, and useful. It provides objective and

important patient-specific clinical information for the patient and her physician to use in their
understanding and treatment of the patient's disease.

Problems encountered in accomplishing tasks

The primary problem we encountered the paucity of data sets with molecular genetic
variables, long term follow-up, and a sufficient number of cases receiving a particular treatment

regimen.
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‘APPENDIX . - PHYSICIAN SURVEY

SURVEY OF PHYSICIAN ESTIMATES OF FIVE YEAR BREAST CANCER-SPECIFIC SURVIVAL

We are interested in your estimate of the breast cancer-specific survival of women diagnosed
in the United States in 1985 .

You are a {check one): oncologist, oncologic surgeon, pathologist,

radiation oncologist .

You graduated from medical school: years ago.

Assume that each of the patients listed below is in your office, and asks you what her chances are,
from date of diagnosis, of living five years. What is your estimate (% alive) of each patient living five
years (not including those patients who died from causes other than breast cancer), over all
primary and adjuvant therapies? Base your estimates on 1985 patients. (Note: for purposes of TNM
staging, all patients with positive lymph nodes have been classed as T1).

PATIENT DESCRIPTION % PATIENTS
SURVIVING 5 YRS

Patient 1. Fifty-five year old, postmenopausal, 2 cm tumor, 0 positive lymph
nodes, no distant metastasis, ER and PR positive, Grade 1.

Patient 2. Thirty-five year old, premenopausal, 1 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 3. Fitty-five year old, postmenopausal, 5'cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1. :

Patient 4. Fifty-five year old, postmenopausal, 6 cm tumor, 0 positive lymph
nodes, no distant metastasis, ER and PR -negative, Grade 1. ,

Patient 5. Forty-five year old, premenopausal, 6 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR positive, Grade 1.

Patient 6. Sixty-five year old, postmenopausal, 6 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 7. Forty-five year old, premenopausal, 1 cm tumor, 3 positive lymph
nodes, positive distant metastasis, ER and PR positive, Grade 3.

Patient 8. Forty-five year old, premenopausal, 3 cm tumor, 1 positive lymph
node, positive distant metastasis, ER and PR positive, Grade 3.

Patient 9. Sixty-five year old, postmenopausal, 3 cm tumor, 1 positive lymph
node, positive distant metastasis, ER and PR posttive, Grade 3.

Patient 10. Forty-five year old, premenopausal, 6 cm tumor, 7 positive lymph
nodes, positive distant metastasis, ER and PR positive, Grade 3.
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BACKGROUND. Screening and surveillance is increasing the detection of early stage
breast carcinoma. The ability to predict accurately the response to adjuvant therapy
(chemotherapy or tamoxifen therapy) or postlumpectomy radiation therapy in
these patients can be vital to their survival, because this prediction determines
the best postsurgical therapy for each patient.

METHODS. This study evaluated data from 226 patients with TNM Stage I and early
Stage II breast carcinoma and included the variables p53 and c-erbB-2 (HER-2/
neu). The area under the receiver operating characteristic curve (Az) was the mea-
sure of predictive accuracy. The prediction endpoints were 5- and 10-year overall
survival. :

RESULTS. For Stage I and early Stage II patients, the 5- and 10-year predictive
accuracy of the TNM staging system were at chance level, i.e., no better than
flipping a coin. Both the 5- and 10-year artificial neural networks (ANNs) were
very accurate—significantly more so than the TNM staging system (Az 5-year
survival, TNM = 0.567, ANN = 0.758; P < 0.001; Az 10-year survival, TNM = 0.508,
ANN = 0.894; P < 0.0001). For patients not receiving postsurgical therapy and for
either chemotherapy or tamoxifen therapy, the ANNs containing p53 and c-erbB-2
and the number of positive lymph nodes were accurate predictors of survival (Az
5-year survival, 0.781, 0.789, and 0.720, respectively).

CONCLUSIONS. The molecular genetic variables p53 and c-erbB-2 and the number
of positive lymph nodes are powerful predictors of survival, and using ANN statisti-
cal models is a powerful method for predicting responses to adjuvant therapy or
radiation therapy in patients with breast carcinoma. ANNs with molecular genetic
prognostic factors may improve therapy selection for women with early stage breast
carcinoma. Cancer 1998;82:874-7. © 1998 American Cancer Society.

KEYWORDS: TNM staging system, artificial neural networks, prognostic factors,
breast carcinoma, tamoxifen therapy, chemotherapy, radiation therapy, outcomes,
c-erbB-2, p53. '

Screening and surveillance is increasing the prevalence of early
stage breast carcinoma. The ability to predict accurately the re-
sponses to adjuvant therapy (chemotherapy or tamoxifen therapy) or
postlumpectomy radiation therapy in these patients can be vital to
their survival, because this prediction determines the best postsurgi-
cal therapy for each patient. The pathologic TNM staging system is
the current cancer prognostic system. Its predictions are based on
three variables: 1) location, size, and depth of tumor; 2) existence
and location of involved lymph nodes; and 3) existence of distant
metastases." We have shown that artificial neural networks (ANNSs)




are more accurate at predicting survival than the TNM
staging system for all stages of breast carcinoma.” It is
not known how accurate the TNM staging system is
in predicting the survival of patients with early stage
breast carcinoma. It is also not known whether ANNs
with molecular genetic prognostic factors, i.e., p53 and
c-erbB-2 (HER-2/neu), can improve prognostic accu-
racy in early stage breast carcinoma across postsurgi-
cal therapies and for specific therapies. This article
compares the survival prediction accuracy of the TNM
staging system with ANN models across all postsurgi-
cal therapies. In addition, it presents a method for
properly assessing putative therapy-dependent prog-
nostic factors and examines the accuracy of ANNs in
terms of specific therapies. Because the TNM staging
system does not predict response to adjuvant or radia-
tion therapy, it is not included in the individual ther-
apy analyses.

METHODS

Data

These data were described in detail in a previous arti-
cle’ Briefly, all patients were pathologic TNM Stage 1
or early Stage II. Early stage breast carcinoma includes
Stage I and limited Stage II. Limited Stage II included
all the TNM Stage II patients except those with five or
more positive lymph nodes. The variables were age,
race, tumor size, lymph nodes positive, lymph node
stage, nuclear grade, histologic grade, p53, c-erbB-2,
estrogen receptor (ER) and progesterone receptor (PR)
status, vascular invasion, adjuvant therapy (tamoxifen
or chemotherapy), and radiation therapy. Patients
who underwent a lumpectomy received radiation
therapy. Patients who underwent a modified radical
mastectomy did not receive radiation therapy. There
were 229 cases, of which 226 had complete data for
all variables except ER and PR status. Because of the
number of cases missing, both ER and PR were re-
moved from the data set. The survival rate was 70%.
The prediction endpoints were 5-and 10-year overall
survival.

Accuracy

The area under the receiver operating characteristic
curve (Az) is a measure of prediction accuracy.* It can
be used to assess and compare the adequacy of statis-
tical models. Az can be directly calculated by Somer’s
D,’ or it can be approximated by its trapezoidal area.®
The area under the curve is a nonparametric measure
of discrimination. It is independent of both the prior
probability of each outcome and the threshold cutoff
for category. Its computation requires only that the
prediction method produce an ordinally scaled rela-

ANN Prediction in Early Breast Carcinoma/Burke et al. 875

TABLE 1

Comparison of the Accuracy of the TNM Staging System and Artificial
Neural Networks in Predicting the 5- and 10-year Survival of Patients
with Early Stage Breast Carcinoma

5-yr survival 10-year survival
Model Az (SEf Az (SE)
™M 0.567 (0.046) 0.508 (0.053)
ANN 0.758 (0.042) 0.894 (0.034)

ANN: artificial neural network; Az: area under the receiver operating characteristic curve; SE: standard
etror.

#TNM vs. ANN 5-year survival, P < 0.001.

b TNM vs. ANN 10-year survival, P < 0.0001.

tive predictive score. In terms of mortality, the receiver
operating characteristic area estimates the probability
that the prediction method will assign a higher mortal-
ity score to the patient who died than to the patient
who lived. The receiver operating characteristic area
varies from 0 to 1. When the predictions are unrelated
to survival, the score is 0.5, indicating chance accu-
racy. The farther the score is from 0.5, the better, on
average, the prediction method is for predicting which
of the two patients will be alive.

Statistical Models

ANN models have been described in detail elsewhere.?
Briefly, the three-layer backpropagation ANN was
composed of an input layer, a hidden layer, and an
output layer. Each layer of an ANN was composed of
nodes. The number of input nodes was equal to the
number of variables. The hidden layer was composed
of three nodes. There was one output node. All the
variables were entered into the three-layer ANN
model. The two-layer ANN was identical to the three-
layer network, except that it did not possess a hidden
layer. After a sensitivity analysis to reduce the number
of input variables to the three with the highest pre-
dictive accuracy, the three selected variables, namely,
the number of positive lymph nodes, p53, and c-erbB-2,
were entered into the two-layer ANN. Both the two-
and three-layer ANNs employed the maximum likeli-
hood loss function and weight decay. Model accuracy
estimates and standard errors were calculated by the
bootstrap resampling method.”

RESULTS

The predictive accuracies of the TNM staging system
and the three-layer ANN models are shown in Table
1. For Stage I and early Stage II patients, the 5- and
10-year prediction accuracy of the TNM staging sys-
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condition due to receipt of an effective therapy. For
example, ER status may predict response to tamoxifen.
Posttherapy prognostic factors predict, after the pa-
tient has received the therapy, whether there has been
a change in the course of the disease due to the inter-
vention. For example, the number of positive lymph
nodes on axillary dissection may predict whether the
patient will respond to the primary surgery. Postther-
apy prognostic factors are important because we do
not want to wait any longer than necessary to adminis-
ter a second-line therapy to patients who do not re-
spond to the primary therapy. All three prognostic fac-
tors are relative to therapy. For each therapy in a suc-
cession of therapies (for example, if a therapy is given
and the patient does not respond to that therapy and
another therapy is contemplated), all three types of
prognostic factors can be analyzed.

Within the context of the small sample size of this
study, the molecular genetic variables p53 and c-erbB-2
are powerful therapy-dependent prognostic factors for
early stage breast carcinoma, and ANN models are an
efficient statistical method for capturing their pre-
dictive power.
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In this issue of Cancer, Dr. Roberti reviews the role of histologic grade
in the prognosis of breast carcinoma and wonders why, because it
is available, it has not been widely used in predicting outcome.' The
position of this editorial is that there must be some fundamental
reason, after 100 years of progress on histologic grade, that confusion
persists regarding its prognostic value.

The systematic use of morphologic variation at the cellular level
of analysis as a prognostic factor in cancer has been fraught with
controversy. Currently, there is no universally agreed on set of neces-
sary and sufficient conditions for the definition of histologic grade in
breast carcinoma. There has been uncertainty regarding the identifi-
cation of what variation was important, how the variation should be
organized, and whether it should be integrated into a staging or index
system. '

An additional issue is that grading system criteria have been se-
lected based on their ability to create subgroups of patients using
histologic distinctions to produce significant differences in outcome.
There are two problems with this approach. First, there are many
possible criteria that can create significant differences between sub-
groups and there is no analytic method for finding the best criteria.?
Second, statistical significance is not necessarily accuracy. Signifi-
cance is the chance that two or more distributions of variables, as
represented by their parameter estimates, for example, means and
variances, are really the same. Accuracy assesses the strength of asso-
ciation between two or more variables.>* In general, accuracy quanti-
fies how good a variable is at predicting another variable. Specifically,
we are interested in the strength of association between grade and
survival, i.e., how good is grade at predicting survival.

Fundamentally, grade remains controversial because it con-
founds two types of time. One type is how long the tumor has been
growing and the other is how rapidly it has been growing. A “high
grade” tumor could be an indolent tumor that grew for a long time
prior to discovery and will continue to be slow growing; alternatively,
it could be an aggressive tumor of recent origin that will continue
to be rapidly growing. Because one can never know when a tumor
originated, it may not be possible on histologic grounds to separate
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a slowly growing tumor from a rapidly growing tumor.
In other words, one cannot always distinguish how
long the tumor has been growing from how fast it has
been growing. The extent to which time ambiguity
exists in grade is the extent to which grade’s prediction
variance will increase and consequently the extent to
which its prediction accuracy will decrease. This limits
grade’s independent prognostic value and its ability
to add significant prognostic value when placed in a
system that includes other time-related factors such
as tumor size.

The mechanical theory of cancer, a view espoused
by Halsted,” assumes that cancer spreads from the
primary tumor to the regional lymph nodes and then
to distant sites of the body. This view is the basis of
the TNM staging system. For the mechanical theory,
the primary purpose of a prognostic system is to cap-
ture the spread of the cancer because cancer spread
is believed to be the best indicator of outcome. The
three elements of the TNM staging system (local tu-
mor, regional lymph node, and distant metastasis®)
are believed to reflect directly the spread of cancer,
i.e., the extent of disease. Grade is not one of the TNM
variables because it does not fit into this mechanical
epistemology; it does not directly reflect the spread of
the cancer. However, even if grade could have been
subsumed within the mechanical theory of cancer, it
would not have replaced tumor size in breast carci-
noma. Using the Surveillance, Epidemiology, and End
Results data of the National Cancer Institute for 1983
1987 and the area under the receiver operating charac-
teristic curve as the measure of accuracy (Az), we
found the Az for grade alone to be .634 and the Az for
tumor size alone to be .737 (P < .05) for 5-year survival.
Furthermore, grade does not add prognostic accuracy
to tumor size; the Az for tumor size and grade com-
bined was .749, which was not significant when com-
pared with tumor size alone. In addition, grade could
not have been added to the TNM staging system be-
cause the system is a bin model comprised of five
levels of tumor characteristics (T), four levels of re-
gional lymph node involvement (N), and two levels of
distant metastasis (M).” Adding the 4 levels of grade
to the 40 bins of the TNM (5T X 4N x 2M) would have
created 160 bins and made it too complex to be useful.’

What is the future of grade as a prognostic factor
in breast carcinoma? If we no longer accept the me-
chanical theory of cancer spread, grade becomes a
possible prognostic factor. In addition, because the
TNM staging system is not very accurate® new com-
puter-based prognostic systems are being developed.”
Computer-based prognostic systems are more accu-
rate in predicting outcome and they do not have a
limitation on the number of variables that can be used.

Can grade be an independent prognostic factor in a
computer-based system or can grade substitute for
another more difficult to assess factor such as lymph
node status?

We evaluated the ability of grade to predict 5-year
breast carcinoma survival using data from the Na-
tional Cancer Institute’s SEER program.® The data
were collected between 1983-1987 and the patients
were followed for at least 5 years. The variables were
tumor size, local extent of disease, lymph node status,
and histologic grade. The criteria used to determine
grade were neither standardized nor explicitly re-
ported. The data set did not include cases with meta-
static disease because grade is infrequently reported
in these patients. Only 14,704 of the 48,643 cases were
graded (30%). All analyses without grade were per-
formed on the full data set of 48,643 cases. An analysis
using the subset of graded cases favors grade because
it is almost certainly the case that the variance of grade
would increase if all the cases were graded. The area
under the receiver operating characteristic curve was
the measure of prediction accuracy. We used the logis-
tic regression statistical method to create our models
(SAS Institute, Cary, NC) and all results were per-
formed on the test data set.

The predictive accuracy of tumor size, local tumor
extent, and lymph status was .794. Adding histologic
grade slightly increased the Az to .797, but this was
not significant. Therefore, in a statistical model with
traditional prognostic factors, grade does not add
prognostic accuracy.

Can histologic grade substitute for a factor that is
becoming difficult to evaluate (e.g., lymph node sta-
tus). To answer this question, we created a logistic
regression model in which grade was the predictor and
lymph node metastasis (detected vs. not detected) was
the outcome. This addressed the issue of how well
grade can take the place of lymph node status as a
prognostic factor (in other words, to what extent does
their prognostic information overlap?). If their predic-
tions completely overlap, then the observed Az would
be 1.0; if there was no overlap, then the observed Az
would be .5. Again using the SEER data set, we found
an Az of .589, which indicated that there was very little
predictive overlap. Therefore, grade is not an effective
surrogate for nodal status.

If grade is to be a useful prognostic factor in the
future it must improve predictive accuracy for women
with small tumors and few involved lymph nodes
when used in predictive models that include the new
molecular genetic prognostic factors. The data set
from Duke University, kindly provided by Dr. Jeffrey
Marks, includes patients with early stage breast carci-
noma. These data were described in a previous arti-
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cle.’® Briefly, all patients were pathologic TNM Stage
I or early Stage 1I. Early Stage II included all TNM Stage
II patients except those with five or more positive
lymph nodes. The variables were age, race, tumor size,
positive lymph nodes, TNM lymph node status, nu-
clear grade, histologic grade, p53, c-erb B-2 (HER-2/
neu), estrogen receptor status (ER) and progesterone
receptor status (PR), vascular invasion, adjuvant ther-
apy (tamoxifen, chemotherapy), and radiation ther-
apy. Patients who underwent a lumpectomy received
radiation therapy. Patients who underwent a modified
radical mastectomy did not receive radiation therapy.
There were 229 cases, 226 of which had complete data
for all variables except ER and PR status. Because
many individual patient ER and PR values were miss-
ing, both variables were removed from the data set.
The 5-year survival rate was 70%. The logistic regres-
sion statistical method was used to create the models
and a prediction endpoint of 5-year overall survival.

Neither histologic grade nor nuclear grade added
any predictive power to the new molecular genetic
prognostic factors in the logistic regression model. The
predictive accuracy for all factors excluding histologic
and nuclear grade was .733; when histologic grade was
added the Az was .738 (not significant), when nuclear
grade was added the Az was .736 (not significant), and
when both were added the Az was .740 (not signifi-
cant).

Overall, the accuracy of the Duke University logis-
tic regression models was lower than the SEER logistic
regression models because outcome prediction for
early stage breast carcinoma was more difficult than
outcome prediction for early and late stage breast car-
cinoma. In the Duke data set, the TNM staging system
performed at chance level when predicting the out-
come of women with early stage breast carcinoma, the
Az was .567."

Histologic grade alone has modest prognostic

value. However, grade does not significantly increase
the predictive accuracy of computer-based prognostic
systems, either in data sets that represent all stages of .
breast carcinoma and contain traditional predictive
factors or in data sets that represent early stage breast
carcinoma and contain the new molecular genetic
prognostic factors.
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Special Article

Specimen Banks for Cancer Prognostic Factor Research

Harry B. Burke, MD, PhD, Donald E. Henson, MD

® Prognostic factors are necessary for determining wheth-
er a patient will require therapy, for selecting the optimal
therapy, and for evaluating the effectiveness of the therapy
chosen. Research in prognostic factors has been hampered
by long waiting times and a paucity of outcomes. Specimen
banks can solve these problems, but their implementation
and use give rise to many important and complex issues.
This paper presents an overview of some of the issues re-
lated to the use of specimen banks in prognostic factor
research.
(Arch Pathol Lab Med. 1998;122:871-874)

Prognostic factors are important for assessing the natu-

ral history of cancer, for selecting the optimal therapy,
and for evaluating the effectiveness of treatment.! Two is-
sues are central to the evaluation of prognostic factors. The
first concerns the time from diagnosis to the analysis of
outcomes (eg, mortality). The longer this interval is, the
longer the prediction time interval becomes. To provide,
for example, 10-year survival predictions, a patient pop-
ulation must be followed for 10 years. The 10-year infor-
mation is used to assess the predictive accuracy of a prog-
nostic factor and to provide 10-year outcome predictions
to future patients. The second issue is the accrual of a
sufficient number of outcomes so that the assessment of
the factor is statistically reliable. Reliable means that a sim-
ilar result would be observed if the analysis were repeat-
ed.

A human specimen bank that contains abnormal and
normal tissue, white cells, serum, and plasma facilitates
prognostic factor research because it eliminates the wait-
ing time problem and the outcome accrual problem by
collecting specimens from a defined patient population
and following the patient population for a sufficient num-
ber of years. When a new putative prognostic factor is
discovered, the stored material can be used to assess its
predictive power.

Because specimen banks have all the difficulties of tra-
ditional data analysis as well as new difficulties, the de-
velopment of a well-designed and useful specimen bank
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presents formidable challenges, especially for prognostic
factor research. Furthermore, because specimen banks
wait in silence for future use, an initial error may not be-
come apparent for many years.

Although specimen banks will prove extremely useful,
they do not solve the problem of how to validate a putative
prognostic factor for a new therapy, that is, for a therapy
that is not represented in the specimen bank population,
nor do they solve the problem of the absence of agreed
upon methods for validating prognostic factors and a con-
sequent inability to replicate results.

Specimen banks are most commonly created for cancers
whose initial therapy is surgical resection of the tumor.
Specimen banks often collect more than the primary tu-
mor. At surgery, blood, adjacent “‘normal” tissue, and met-
astatic tissue may also be collected. Although difficult and
sometimes not feasible, blood should be collected after
surgical therapy at regular intervals over many years and,
if possible, tissue should be collected at recurrence, in-
cluding from metastases, to assess a prognostic factor’s
predictive ability over time.

Clinical follow-up information and status, which are
critical data for prognostic factor research, should be col-
lected regularly, and investigators who have used the
specimen bank should regularly update their data sets. A
mechanism should exist for tracking patients who change
physicians, move, or who for any other reason are lost to
follow-up. Specimen banks for relatively slow-growing tu-
mors (eg, breast and prostate cancer) and for rare tumors
should be maintained for at least 20 years and preferably
longer. Computer-based databases should be created and
maintained for the life of the specimen bank.

A specimen bank must provide investigators with the
relevant information regarding its data and tissue so that
investigators can decide whether the tissue is appropriate
for their task. Because tissue is to be distributed to many
investigators for different purposes, the specimen bank’s
collection and reporting methods are critical. The better
the specimen collection and reporting methods are, the
more effectively the specimen bank can be used.

What follows is an overview of some of the important
issues related to the use of specimen banks for prognostic
factor research. Many of these issues are difficult to deal
with and expensive to solve, and some may be insoluble,
but they must be explicitly recognized by those creating
and maintaining specimen banks.

MULTI-INSTITUTION COLLECTION

It has been the common practice of cancer investigators
to collect and store human tissue for their own research.
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The collecting investigator usually knows the characteris-
tics of the patient population (including demographic and
clinical data, treatment, and outcome) and of the tissue
acquisition, storage, and retrieval process, and therefore
the strengths and limitations of the specimen bank. To
hasten the evaluation of molecular genetic putative prog-
nostic factors, granting agencies have recently been pro-
viding funds for the coordinated collection and storage of
human tissue from large numbers of patients.>* For breast
cancer alone there are currently at least 57 specimen
banks.* Because of the number of patients required, these
specimen acquisition efforts usually involve multiple in-
vestigators and multiple institutions.

An essential difference between multi-investigator, mul-
ti-institutional specimen banks and individual investigator
specimen banks is that the investigators using multi-insti-
tutional specimen banks must rely on patient information
and tissue supplied by the specimen bank. These investi-
gators need detailed information regarding the patient se-
lection criteria; demographic and clinical variable defini-
tions; data acquisition methods; data coding system; tissue
acquisition technique; and tissue preparation, storage, and
retrieval methodology. Effective use of the tissue depends
critically on the ability of the specimen bank to acquire,
organize, and disseminate this information accurately and
in a timely manner and, where possible, to standardize
the patient acquisition, tissue collection, and clinical re-
porting process across collecting institutions to reduce in-
terinstitutional variance.

A central issue for multi-institutional specimen banks is
uniformity of methods. Surgical technique, specimen han-
dling, tissue preparation, and quality assurance should be
as uniform as possible across physicians and institutions.
Some degree of standardization can be achieved by stan-
dardized procedures and training programs. Most cancer
prognostic factors, including new molecular-genetic fac-
tors, are relatively weak predictors.? Therefore, the less
uniformity that exists among institutions, the greater the
loss of prognostic power and the greater the likelihood is
that a strong factor will become weak and that a factor
that is important for a small number of patients will be
lost. It is through the combination of relatively weak fac-
tors in prognostic models that accurate predictions be-
come possible.!

For multi-institutional data, the agreement among insti-
tutions in terms of clinical and laboratory variables and
tissue characteristics should be assessed and reported to
investigators. For continuous variables (eg, tumor size), a
measure of central tendency, such as the mean (if the vari-
able is normally distributed), and its variance should be
calculated and the statistical differences assessed. For cat-
egorical variables (eg, race), the ¥? statistic can be calcu-
lated, and for ratings, Cohen's « statistic® can be calculated.
If there is high interinstitutional variance, an investigator
may, depending on the research issue and study design,
restrict the source of tissue to one institution or to certain
variables.

PATIENT SELECTION

The representativeness of a population of cancer pa-
tients is of vital importance because it determines the ge-
neralizability of the research results. For this reason, pa-
tient representativeness information should be provided to
investigators prior to the use of the tissue. An unbiased
patient selection process is necessary for population rep-
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resentativeness, since a bias in patient selection may yield
results that are not generalizable. Sometimes a bias is mi-
nor and can be ignored, sometimes it is major but can be
dealt with in terms of a reasonable assumption, and some-
times it is major and cannot be dealt with. In the last case,
the investigator may wish to explore other more represen-
tative specimen banks. For example, tissue could be col-
lected from a special group of women, and the frequency
of BRCAI mutations could be determined and related to
the incidence of breast cancer in that special population.
It cannot be assumed, however, that the same quantitative
relationship will hold true for all populations of women.

Population representativeness depends on many factors.
One factor is the recruitment of patients. For example, clin-
ical trials rarely provide a representative population of
cancer patients because their entry criteria usually exclude
certain patient groups. Thus, clinical trial populations are
usually a biased sample because their entry criteria op-
erate as a selection bias mechanism. This mechanism can
limit the generalizability of the prognostic factor results.
If an investigator expects the prognostic factor results to
apply only to the patients that met the clinical trial’s entry
criteria, that is, to be in a position to perform only con-
ditional prediction tasks, then the analysis may proceed.
If the investigator expects the study results to apply to all
the patients, however, additional assessment should be
performed to determine if this generalization is reasonable
given the study being contemplated. For example, for a
study performed in a single institution, the investigator
can determine whether the institution's patient population
is representative of a more general patient population by
comparing the characteristics of the institution’s patient
population with those of the larger patient population.

Patient populations may be biased by the method used
for identifying incident cases. For example, some collection
methods miss, in a nonrandom manner, approximately
18% of incident cases.” Patient populations may be biased
by the clinical setting in which the cases are detected. For
example, it is known that there are differences in the TNM
stage frequencies reported by different types of hospitals.?
Patient populations may be biased by where the patients
are treated. Oncology clinic populations may differ from
hospital populations. For example, in situ cancers may be
more common in oncology clinics than in hospitals.” Pa-
tient populations may be biased by not distinguishing be-
tween incident and prevalent cases because prevalence de-
pends on survival” Patient populations may be biased by
the incomplete collection of representative patient data.
For example, incompleteness is an issue in data sets that
have not existed for at least 40 to 50 years because the
sample is not representative of the full spectrum of prev-
alent cases.® Finally, definitions may change over time. For
example, changes in the TNM variable definitions!®-*
make it difficult to compare outcomes in terms of extent
of disease.’®

VARIABLE DEFINITIONS AND CODING

It is a nontrivial task to standardize the definition and
coding of the clinical variables essential for prognostic fac-
tor research. Tumor registrars, for example, continue to
refine the definitions and coding of the commonly col-
lected variables. Prior to any data or tissue collection, rep-
resentatives from each collecting institution should agree
on a list of variables to be collected and create explicit
definitions and a coding system for each variable. As the
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specimens are collected and stored, an active quality as-
surance process should be in place at each institution. The
quality assurance process will determine whether the def-
initions and coding system are being followed, and if not,
whether to increase institutional vigilance or change the
definitions and coding so that they can be adhered to.

DATA ACQUISITION METHODS

There are 3 data acquisition problems. The least difficult
is the veracity of the original data source and the data
entry. These errors include either incorrect entry of patient
data in the patient’s medical record or an error by the data
collector. Data entry errors can be minimized through
proper quality control. Two more difficult problems are
missing data, that is, unknown variable values, and pa-
tients lost to follow-up, a type of censoring.

If a data set contains nonrandomly missing variable
data,’s then the missing data mechanism should be ex-
plicitly considered.”” For example, in the National Cancer
Data Base data set for the year 1983 with follow-up until
1990, of the 19147 cases listed, only 10357 are TNM
staged (H.B.B., unpublished data, 1997). An investigator
using tissue from these cases would have to ascertain
whether the unstaged cases are the “same” as the staged
cases. The missing values for some variables should be
reacquired, while those of other variables should be filled
in, depending on the importance of the variable. Basic in-
formation that should be included in the data set, such as
therapy, can be easily lost,” and that type of data should
be recaptured. If missing data are to be filled in, Little
and Rubin’s” book should be consulted.

Censoring (eg, patients lost to follow-up) is of critical
importance to investigators because the primary purpose
of the specimen bank is to provide outcome information
that is useful for prognostic factor research. The 8-year
censoring rate in the 1983 National Cancer Data Base data
set is more than 25% (unpublished data). Censored cases
usually have a less favorable outcome than noncensored
cases.”*® Consequently, investigators should be informed
of the specimen bank’s censoring rate. If it is high (eg,
greater than the 5% observed in the Surveillance, Epide-
miology, and End Results [SEER] Program'®), measures
should be taken to systematically recapture these patients
or the censoring mechanism should be explicitly consid-
ered. In addition, all patient variables should be compared
with existing national databases. For example, the SEER
Program reports an 84% 5-year survival rate,’® and the
National Cancer Data Base reports a similar 80% 5-year
survival rate for patients with breast cancer (unpublished
data). A survival rate in this range should be observed in
breast cancer specimen banks. Using the existence of out-
come data as a criterion for tissue selection by an inves-
tigator would not be appropriate if the patients who were
lost to follow-up were lost because of their disease. In oth-
er words, if patients were lost because they were too sick,
then selecting only those patients who were followed
could bias a prognostic factor analysis.

It should be noted that there can be problems with sur-
vival estimation if the ascertainment of vital status is not
random.? Finally, using cancer-specific survival as an out-
come may be problematic because it assumes (1) that phy-
sicians accurately code death certificates and (2) that every
patient dies of a single identifiable disease that can be cor-
rectly ascertained without autopsy. These assumptions are
doubtful in the real world of competing risks.?
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TISSUE ACQUISITION, PREPARATION,
STORAGE, AND RETRIEVAL

In addition to clinical data collection, there are impor-
tant issues related to tissue acquisition, preparation, stor-
age, and retrieval. The manner in which the tissue has
been collected, classified, stored, and retrieved may limit
the types of studies that can be conducted or the “yield”
of the tissue, or may affect the results of the study.?>* For
each case, a sufficient amount of tumor should be available
to investigators. If appropriate and possible, matching
nonneoplastic tissue should accompany the tumor speci-
men. Because cellular degradation begins soon after re-
moval, specimens should be kept as cool as possible and
processed rapidly. )

The 2 most common types of tissue processing are
freezing and formalin/ paraffin. Each has advantages and
disadvantages for molecular genetic analysis. Ideally, tis- .
sue should be snap-frozen in liquid nitrogen as soon as
possible after excision and should be stored at —70°C.»
Delays in freezing or inadequate freezing can result in
artifactual genetic changes. Some analyses can only be
performed on frozen tissue. For example, if the concor-
dance between abnormalities detected by immunohisto-
chemistry and cDNA is important, then, depending on the
antigen, paraffin-embedded, formalin-fixed tissue may
not be useful. Frozen tissue allows the polymerase chain
reaction to be carried out on long stretches of DNA (1000
base pairs), since the DNA remains intact. Unfortunately,
frozen tissue is difficult to handle, expensive to store, hard
to provide in small amounts, and difficult to distribute to
multiple investigators.” Procedures for processing tissue
for molecular pathology have been published.”

For routine pathologic examination, tissues are usually
fixed in formalin, dehydrated, and embedded in paraffin.
Formalin forms cross-links between the reactive amine
groups on adjacent proteins and between DNA and pro-
teins, which makes the DNA rigid. Because of its rigid
structure, subsequent tissue processing may cause frag-
mentation of the DNA. With conventional 10% formalin
fixation, numerous variables are involved, including the
duration of fixation, days in fixation that may result in
DNA fragmentation by nucleases, size of the tissue, fixa-
tion gradients, and pH. These variables are difficult to
standardize across institutions.?

Polymerase chain reaction amplification studies may be
performed on archival formalin-fixed tissue even after
years of storage.*> In contrast to the situation with frozen
tissue,® the restriction fragments will be relatively small,
usually 100 to 300 base pairs in length. Cross-linking of
the DNA can interfere with hybridization.> However, in
spite of these effects of fixation, experience indicates that
archived tissue is an invaluable resource for research in
molecular genetics. Investigators have reported successful
amplification of DNA extracted from 40-year-old speci-
mens.* Fixatives that contain heavy metals, such as zinc
or mercury (Zenker’s fixative), will destroy DNA and are
not suitable for tissue that is destined for DNA analysis.
There is evidence that fixation in nonbuffered formalin
may also degrade DNA.* The labile nature of RNA makes
it difficult to recover in formalin-fixed tissue. Therefore,
investigators interested in mRNA should use specimen
banks that have the relevant cDNA library or that contain
frozen tissue.

Highly suitable for tissue banks, immunohistochemical
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methods can be used to detect the presence of specific
gene products in tissue sections. For some antigens that
deteriorate, the proper storage of tissues for subsequent
immunohistochemistry is critical. Inappropriate fixation
and tissue processing can affect the results as much as the
variation in the antibody.” Fixed tissue may be stored as
unstained cut sections mounted on glass slides or in par-
affin blocks. Fixed tissues cut into sections, mounted on
slides, and stored unstained may not always be suitable
for immunohistochemistry. It has been shown, for exam-
ple, that immunostaining intensity for p53 and other an-
tigens will decay over time if the sections are cut from
paraffin-embedded tissue and stored unstained on glass
slides.**” On the other hand, antigens usually do not de-
cay if tissues are maintained in paraffin blocks. There is
no decline in p53 staining intensity in tissues stored in
paraffin blocks for more than 13 years.3

COMMENT

Prognostic factors are necessary for determining wheth-
er a patient will require therapy, for selecting the optimal
therapy, and for evaluating the effectiveness of the thera-
py- Research in prognostic factors has been hampered by
long waiting times and a paucity of outcomes. Although
the implementation and use of specimen banks give rise
to many important and complex issues, including the pos-
sibility of population biases and problems related to spec-
imen handling, storage, and retrieval, specimen banks, be-
cause they solve the problems of prediction time and re-
liability, are a major advance in the field of prognostic
factor research.

This work was supported in part by a research grant from the
US Army Medical Research and Development Command Breast
Cancer Research Program (DAMD 17-94-]-4383). We thank Wil-
liam E. Grizzle, MD, PhD, and Sheila Taube, PhD, for their helpful
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BACKGROUND. The TNM staging system originated as a response to the need for
an accurate, consistent, universal cancer outcome prediction system. Since the
TNM staging system was introduced in the 1950s, new prognostic factors have
been identified and new methods for integrating prognostic factors have been
developed. This study compares the prediction accuracy of the TNM staging system
with that of artificial neural network statistical models.

METHODS. For 5-year survival of patients with breast or colorectal carcinoma,
the authors compared the TNM staging system’s predictive accuracy with that of
artificial neural networks (ANN). The area under the receiver operating characteris-
tic curve, as applied to an independent validation data set, was the measure of
accuracy.

RESULTS. For the American College of Surgeons’ Patient Care Evaluation (PCE)
data set, using only the TNM variables (tumor size, number of positive regional
lymph nodes, and distant metastasis), the artificial neural network’s predictions
of the 5-year survival of patients with breast carcinoma were significantly more
accurate than those of the TNM staging system (TNM, 0.720; ANN, 0.770; P <
0.001). For the National Cancer Institute’s Surveillance, Epidemiology, and End
Results breast carcinoma data set, using only the TNM variables, the artificial
neural network’s predictions of 10-year survival were significantly more accurate
than those of the TNM staging system (TNM, 0.692; ANN, 0.730; P < 0.01). For
the PCE colorectal data set, using only the TNM variables, the artificial neural
network’s predictions of the 5-year survival of patients with colorectal carcinoma
were significantly more accurate than those of the TNM staging system (TNM,
0.737; ANN, 0.815; P < 0.001). Adding commonly collected demographic and ana-
tomic variables to the TNM variables further increased the accuracy of the artificial
neural network’s predictions of breast carcinoma survival (0.784) and colorectal
carcinoma survival (0.869).

CONCLUSIONS. Artificial neural networks are significantly more accurate than the
TNM staging system when both use the TNM prognostic factors alone. New prog-
nostic factors can be added to artificial neural networks to increase prognostic
accuracy further. These results are robust across different data sets and cancer
sites. Cancer 1997; 79:857-62. © 1997 American Cancer Society.
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breast carcinoma, colorectal carcinoma, survival, outcomes, decision-making, clini-
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he TNM staging system originated as a response

to the need for an accurate, consistent, universal
cancer outcome prediction system.! Since the TNM
staging system was introduced in the 1950s, new prog-
nostic factors have been identified®® and new methods
for integrating prognostic factors have been devel-
oped.’ These methods may be capable of (1) providing
more accurate predictions than the TNM staging sys-
tem, using the TNM variables alone (primary tumor
size, regional lymph node involvement, and distant
metastasis), and (2) further increasing prognostic ac-
curacy by integrating new prognostic factors with the
TNM variables. This study compares the cancer spe-
cific 5-year survival prediction accuracy for breast and
colorectal carcinoma of the TNM staging system with
that of artificial neural network statistical models.

METHODS

Data

We used the Commission on Cancer’s breast and colo-
rectal carcinoma Patient Care Evaluation (PCE) data
sets and the National Cancer Institute’s Surveillance,
Epidemiology, and End Results (SEER) breast carci-
noma data set.

In October 1992, the American College of Sur-
geons (ACS) requested cancer information from ACS-
accredited hospital tumor registries in the United
States. Specifically, they requested the first 25 cases of
first-diagnosis breast and colorectal carcinoma seen
at each institution in 1983, as well as follow-up infor-
mation, including deaths, through the date of the re-
quest. Variables from this data set used in the breast
carcinoma analysis were age, race, payment method,
menopausal status, family history, previous biopsy,
other cancer, other breast carcinoma, nipple dis-
charge, mammogram, where in the breast the carci-
noma occurred, necrosis, histologic grade, estrogen
receptor status, progesterone receptor status, number
of lymph nodes positive, number of lymph nodes ex-
amined, presence or absence of distant metastasis, tu-
mor size, tumor type (in situ, extension to chest wall,
or inflammatory), treatment (surgery, chemotherapy,
or radiation therapy), and patient outcome (alive or
dead). All variables were binary except age, tumor size,
number of positive lymph nodes, and number of
lymph nodes examined. The PCE data set contained
up to 8 years of follow-up information. The analysis
end point was breast carcinoma specific 5-year sur-
vival. Cases with missing data and those censored be-
fore 5 years were excluded. The data set was randomly
divided into a training set of 5169 cases, including
training and stop-training subsets, and a validation set
of 3102 cases.

Variables from the PCE data base used in the colo-
rectal carcinoma analysis were age, race, gender, signs

and symptoms (changes in bowel habits, obstruction,
jaundice, malaise, occult blood, abdominal pain, pel-
vic pain, rectal bleeding, or others), diagnostic and
extent-of-disease tests (endoscopy, radiography, bar-
ium enema, computed tomography scan, biopsy, car-
cinoembryonic antigen, X-ray, colonoscopy, flexible
sigmoidoscopy, intravenous pyelography, liver func-
tion tests, biopsy, or other tests), primary site of tumor,
level of tumor, histology, grade, number of lymph
nodes examined, number of lymph nodes positive, dis-
tant metastases, and patient outcome (alive or dead).
The end point was 5-year colorectal carcinoma spe-
cific survival. After removing cases with missing data
and censored patients, the data set was randomly di-
vided into a set of 5007 training cases, including train-
ing and stop-training subsets, and a validation set of
3005 cases.

The National Cancer Institute’s SEER breast carci-
noma data set, for new cases collected from 1977-
1982, with 10-year follow-up, was also analyzed. The
extent-of-disease variables for the SEER data set were
comparable to, but not always identical with, the TNM
variables. The end point was breast carcinoma specific
10-year survival. After removing cases with missing
data and censored patients, the data set was randomly
divided into a set of 3788 training cases, including
training and stop-training subsets, and a validation set
of 2999 cases.

Models

The TNM staging system used in this analysis was the
pathologic system based on the American Joint Com-
mittee on Cancer’s Manual for Staging of Cancer.' The
TNM staging system’s predicted survival for a patient
in a particular stage is the average survival of patients
in that stage.

In medical research, the most commonly used ar-
tificial neural networks (ANN) are multilayer per-
ceptrons that use backpropagation training (Figure 1).
Backpropagation consists of fitting the parameters
(weights) of the model by a criterion function, usually
squared error or maximum likelihood, using a gradient
optimization method. In backpropagation artificial
neural networks, the error (the difference between the
predicted outcome and the true outcome) is propa-
gated back from the output to the connection weights
in order to adjust the weights in the direction of mini-
mum error. (For a more detailed description of artifi-
cial neural networks, see Burke* and Cross.’) The arti-
ficial neural network employed in this research was
composed of three interconnected layers of nodes: an
input layer, with each input node corresponding to a
patient variable; a hidden layer; and an output layer.
All nodes after the input layer sum the inputs to them
and use a transfer function (also known as an activa-
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Patients A, B, C

integrative function is
usually summation of
the weights.

Transfer function is
usually sigmoid.
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FIGURE 1. Patient A’s variable values (Va—Za) are entered into the ariificial neural network, followed by patient B, etc. Each variable’s input value is
multiplied by the weight between the input node for that variable and each hidden layer node it is connected to. All the weighted values going to a
hidden layer node are summed at the hidden layer node and go through a sigmoid function before being transferred to the output node. All the weighted
values coming into the output node are again summed and put through a sigmoid function. For each patient, the output is a probability from 0-1.0. In
training the artificial neural network, the output of each patient is compared with each patient’s true outcome. The weights are adjusted so that the next
time the patient is presented to the network, the network output is closer to the true outcome.

tion function) to send the information to the adjacent
layer nodes. The transfer function is usually a sigmoid
function, e.g., the logit. The connections between the
nodes have adjustable weights that specify the extent
to which the output of one node will be reflected in
the activity of the adjacent layer nodes. These weights,
along with the connections among the nodes, deter-
mine the output of the network.

The mathematical representation of an artificial

neural network shown here is equivalent to the graphic
model in Figure 1:

0))]
2

by = fwhx, + whx, + +++ + whxy,)

o; = gwih, + wih, + «+ - + whhy)
where “h;,” in Equation 1 is the output of each of the
hidden nodes j, fis a nonlinear transfer function, w”
is the weight from predictor i to hidden node j, and




860 CANCER February 15, 1997 / Volume 79 / Number 4

x; is an input variable. In Equation 2, o; is the predic-
tion of the network, gis a nonlinear transfer function,
w” is the weight to the output node, and % is the hidden
node output. It should be noted that Equation 2, with-
out the input from Equation 1, is equivalent to logistic
regression, where g is the logistic function, w is the
beta coefficient, and # is the x covariate.

Specifically, our artificial neural network (NevProp
software = implementation) used backpropagation
training, the maximum likelihood criterion function,
and a gradient descent optimization method. The
number of input nodes correspond to the number of
input variables, the number of hidden layer nodes
ranged from three to five, and there was one output
mode. Significant differences in the receiver operating
characteristic areas between the TNM staging system
and the artificial neural network were tested according
to the method of Hanley and McNeil.® The training
data set was divided into training and stop-training
subsets. (Training was stopped when accuracy started
to decline on the stop-training data subset.) All analy-
ses employed the same training and validation data
sets, and all results were based on the one-time use
of the validation data sets.

Accuracy
There are three components to predictive accuracy:
the amount and quality of the data, the predictive
power of the prognostic factors, and the prognostic
method’s ability to capture the power of the prognos-
tic factors. This study focused on the third component.
The measure of comparative accuracy is the trape-
zoidal apProximation to the area under the receiver
operating characteristic curve.” The area under this
curve is a nonparametric measure of discrimination.
While squared error summarizes how close each pa-
tient’s prediction is to the true outcome, the receiver
operating characteristic area measures the relative
goodness of the set of predictions as a whole by com-
paring the predicted probability of each patient with
that of all pairs of patients. This area is calculated
using the predictive scores of each algorithm in order
to compare their average accuracy in predicting out-
come. The receiver operating characteristic area is in-
dependent of both the prior probability of each out-
come and the threshold cutoff for categorization, and
its computation requires only that the algorithm pro-
duce an ordinally-scaled relative predictive score. In
terms of mortality, the receiver operating characteris-
tic area estimates the probability that the algorithm
will assign a higher mortality score to the patient who
died than to the patient who lived. The receiver op-
erating characteristic area varies from 0 to 1. When
the prognostic score is unrelated to survival, the score
is 0.5, indicating chance accuracy. The farther the

TABLE 1
Comparison of the TNM Staging System with the Artificial Neural
Network

TNM staging  Artificial neural

Data sets system network
PCE breast CA, TNM variables alone 0.720 0.770°
PCE breast CA, TNM and added variables 0.720 0.784°
SEER breast CA, TNM variables alone 0.692 0.730°
PCE colorectal CA, TNM variables alone 0.737 0.815°
PCE colorectal CA, TNM and added variables  0.737 0.869*

PCE: Patient Care Evaluation (Commission on Cancer); SEER: Surveillance, Epidemiology, and End
Results (National Cancer Institute).

P < 0.00L

bp<O0L

score is from 0.5, the better, on average, the prediction
model is at predicting which of the two patients will
be alive.

RESULTS

A comparison of the accuracy of the TNM staging sys-
tem and the artificial neural network is shown in Table
1. For the PCE breast carcinoma data set, using only
the TNM variables (tumor size, number of positive
regional lymph nodes, and distant metastasis), the ar-
tificial neural network’s predictions of breast carci-
noma specific 5-year survival were significantly more
accurate than those of the TNM staging system (TNM
0.720; vs. ANN, 0.770, P < 0.001). Since the TNM stag-
ing system is, by definition, limited to the TNM vari-
ables, additional variables do not improve the TNM
staging system’s predictive accuracy. However, adding
commonly collected demographic and anatomic vari-
ables to the TNM variables further increased the accu-
racy of the artificial neural network (to 0.784).

We were able to test whether the artificial neural
network’s significant improvement in predictive accu-
racy was generalizable across data sets. For the Na-
tional Cancer Institute’s 19771982 SEER breast carci-
noma data set, using only the TNM variables, the arti-
ficial neural network’s predictions of 10-year survival
were significantly more accurate than those of the
TNM staging system (TNM 0.692 vs. ANN 0.730, P <
0.01).

We were able to test whether the artificial neural
network’s significant improvement in predictive accu-
racy was generalizable across cancer sites. For the PCE
colorectal data set, using only the TNM variables, the
artificial neural network’s predictions of 5-year colo-
rectal carcinoma specific survival were significantly
more accurate than those of the TNM staging system
(TNM 0.737 vs. ANN 0.815, P < 0.001). Adding com-
monly collected demographic and anatomic variables

~




to the TNM variables further increased the accuracy
of the artificial neural network (0.869).

To clarify the clinical importance of the observed
increases in accuracy, we changed the area under the
curve (A,) scale to a -1 to +1 scale, i.e., [2(A, — 0.5)].
On this scale, 0 was chance and 1.0 was perfect predic-
tion. By this measure, the TNM staging system’s accu-
racy was 44% greater than chance for breast carcinoma
specific 5-year survival predictions. Placing the TNM
variables in the artificial neural network increased pre-
dictive accuracy to 54%, and adding variables that in-
dividually had little prognostic value to the artificial
neural network further increased prognostic accuracy
to 57% greater than chance prediction. Corresponding
increases in predictive accuracy specific to colorectal
carcinoma were as follows: 47% for the TNM staging
system increased to 63% when the TNM variables were
placed in the artificial neural network, and that in-
creased to 74% when several commonly collected vari-
ables were added to the artificial neural network.

DISCUSSION

The TNM staging system is only moderately accurate
in its breast and colorectal carcinoma specific 5-year
survival predictions. The significant superiority in pre-
dictive accuracy that the artificial neural network
showed when compared with the TNM staging system
across data sets and cancer sites suggests that it is able
to improve our ability to predict the survival of cancer
patients. In addition, artificial neural networks can be
expanded to include any number of prognostic factors.
They can accommodate continuous variables and they
can provide presurgery and postsurgery treatment
predictions.

Artificial neural networks are a class of nonlinear
regression and discrimination statistical methods. They
are of proven value in many areas of medicine.* " They
do not require a priori information regarding the phe-
nomenon, and they make no distributional assumptions.
When the appropriate method is used to avoid overfit-
ting (i.e., loss of generalization by fitting the patterns to
the test data too precisely), artificial neural networks are
usually at least as accurate as classical statistical models,
and, depending on the complexity of the phenomena,
they can be much more accurate. In predicting 5-year
breast carcinoma specific survival, they have been
shown to be more accurate than logistic regression, clas-
sification and regression trees (CART; pruned or shrunk),
and principal components analysis.*

The improvement in prognostic ability made possi-
ble by artificial neural networks may be clinically im-
portant for therapy, clinical trials, patient information,
and quality assurance. In decision-making regarding
therapy, it may allow the efficient separation of patients
with a poor prognosis (who require therapy) from pa-
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tients with an excellent prognosis (who require little or
no therapy), and it may predict who will respond to
a particular therapy. In clinical trials, it may decrease
interpatient variability. This would allow for the creation
of more homogenous patient populations for clinical
trials, resulting in smaller clinical trial patient popula-
tions, less expensive trials, and the ability to detect treat-
ment effects that would be undetectable in more hetero-
geneous study populations. With regard to patient infor-
mation, it may give patients a clearer understanding of
the time course of their disease. Finally, for assessment
and quality assurance, it may provide a better severity
of illness adjustment.
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Increasing the Power of Surrogate Endpoint Biomarkers:
The Aggregation of Predictive Factors

Harry B. Burke, MD, PhD

University of Nevada School of Medicine, Washoe Medical Center, Reno, NV 89520

Abstract A variable that predicts an outcome with sufficient accuracy is called a predictive factor.
Predictive factors can be divided into three types based on the outcomes to be predicted and on the
accuracy with which they can be predicted. These three types include risk factors, where the main
outcome of interest is incidence and the predictive accuracy is less than 100%; diagnostic factors, where
the main outcome of interest is also incidence but the predictive accuracy is almost 100%; and prognostic
factors, where the main outcome of interest is death and the predictive accuracy is variable. Surrogate
outcomes are predictive factors that are used for a purpose beyond the prediction of an out-
come—surrogate outcomes are predictive factors that are substituted for the true outcome in order to
determine the effectiveness of an intervention. Surrogate outcomes used in clinical trials are called
intermediate endpoints and surrogate endpoints.

Predictive factors used as surrogate outcomes have a poor accuracy rate in predicting the true
outcome; aggregating risk factors increases predictive accuracy. Artificial neural networks effectively
combine predictive factors. Aggregating predictive factors increases the degree of linkage of the
surrogate outcome to the true outcome. The resulting increase in predictive accuracy allows enrollment
of people most likely to benefit from intervention. This increases the trial's efficiency, reducing the
number of people required to assess a chemopreventive agent. ~ © 1994 Wiley-Liss, Inc.

Key words: Chemoprevention, predictive factors, risk factors, surrogate endpoint biomarkers, surrogate
outcomes

The risk, diagnostic, and prognostic cancer

PREDICTIVE FACTORS
domains have their own literature and nomencla- '
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ture. With the advent of molecular genetics, risk
assessment, surrogate outcomes and chemopre-
vention, early detection, and new prognostic
factors the divisions between these domains have
blurred. This has led to some confusion as each
domain's terminology is applied to the overlap
between the domains. In this paper we propose
to standardize several terms common to these
three domains, and to demonstrate a method for
combining predictive factors to increase predic-
tion accuracy.

Address correspondence to Harry B. Burke, MD, PhD,
University of Nevada School of Medicine, Washoe Medical
Center, 77 Pringle Way, Reno, NV 89520.

© 1994 Wiley-Liss, Inc.

For a predictive factor to be useful, its value
must change in a predictable way when an
intervention changes the outcome. An outcome
is anything we are interested in predicting. In
cancer, certain outcomes are important because
they guide therapy. The three most common
outcomes in cancer are incidence, recurrence,
and death. Predictive factors can be outcome-
specific; a variable may be a predictive factor for
one outcome but not for another. Factors are
level-of-analysis dependent; a particular factor
exists only at a particular level of analysis. The
terms "marker," "biomarker," "predictor," "prog-
nosticator,” and ‘"indicator" have been wused
interchangeably with the term "factor,” but they
are not always synonymous. For example, most
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predictive factors are markers of disease, but few
markers of disease are predictive.

To determine whether a variable is a predic-
tive factor, and if so, to determine its predictive
accuracy, an outcome must be selected and the
variable must be tested in a population. The
population must be followed until a sufficient
number of people in that population have
achieved that outcome. If the variable predicts
the outcome we are interested in with a suffi-
cient accuracy, we call it a predictive factor.
Sufficiency depends on the domain under study,
and accuracy depends on the strength of the
relationship between variable and outcome, the
quality of data collection, and the ability of the
predictive model to capture the relationship
between variable and outcome. For prediction
with a single factor, people with that factor are
subsequently predicted to live as long as those
with that factor in the original population. If the
predicted outcome always occurs, we say that
the predictive factor and the outcome are 100%
linked, i.e., that the factor has a 100% predictive
accuracy.

RISK, DIAGNOSTIC, AND
PROGNOSTIC FACTORS

Predictive factors can be divided into three
types based on the outcomes to be predicted and
the accuracy with which they can be predicted
(Table I). These three types include risk factors,
where the main outcome of interest is incidence
and the predictive accuracy is less than 100%;
diagnostic factors, where the main outcome of
interest is also incidence but the predictive
accuracy is almost 100%; and prognostic factors,
where the main outcome of interest is death and
the predictive accuracy is variable.

The term "risk" has several meanings. It can
be used as a general term to denote the probabil-
ity of the occurrence of an outcome, but it can
also be used to denote a particular kind of
predictive factor. This can be confusing, e.g., the
risk of disease given certain risk factors. In order
to avoid this confusion, we will replace the

general meaning of the term "risk" with the term

"probability.” Thus, we can speak of the probabil-
ity of death given certain risk factors.

Risk factors are factors that either alone, or in
combination with other factors, are less than
100% predictive of disease (incidence). They

o

represent a propensity for disease at some future
date. When a group of risk factors can be com-
bined so that there is an almost 100% certainty of
the disease at some future date, they become
preclinical diagnostic factors (defined in the
following paragraph) and are equivalent to
screening for the disease. People at substantial
risk require chemoprevention to prevent them
from expressing the disease.

Diagnostic factors are factors that either alone,
or in combination with other factors, are almost
100% predictive of disease. They can predict that
disease exists at the time the factor is deter-
mined, or that it will exist at a usually unspeci-
fied time in the future. Two types of diag-
noses—the existence of preclinical disease or
clinical disease—can be made. In the preclinical
disease state there is no evidence of invasive
disease; in the clinical disease state there is
evidence of invasive disease. Incidence occurs
when invasive disease is detected by a diagnostic
test. The preclinical disease state is almost al-
ways discovered by screening using biological
and/or radiological tests, or by accident. The
clinical disease state can be asymptomatic or
symptomatic. Asymptomatic clinical disease is
also almost always discovered by screening or
accident, whereas the discovery of symptomatic
disease is usually the result of a directed search.
Early detection is the existence of one or more
positive diagnostic factors in the preclinical or
asymptomatic patient. Preclinical patients require
chemoprotection, to protect them from express-
ing the disease.

Prognostic factors exist in patients with the
disease and predict the outcome of interest. They
are susceptible to change when therapy changes
the future course of the disease. Prognostic
factors are usually less than 100% predictive of
the outcome, and are usually combined to in-
crease their prognostic accuracy. They may be
prognostic only for certain outcomes and certain
times in the disease process, or they may be
prognostic for all outcomes at any time in the
course of the disease. For example, predicting the
outcome recurrence may require different prog-
nostic factors than predicting the outcome sur-
vival. The relationship between predictive fac-
tors, disease states, and interventions is shown in
Figure 1.

Some diagnostic and prognostic factors are
related; some diagnostic factors are prognostic
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TABLE I. Three Types of Predictive Factors

PREDICTIVE MAIN OUTCOME
FACTOR ACCURACY OF INTEREST
Risk Much less than 100% Incidence
Diagnostic Close to 100% Incidence
Prognostic Variable Death
RISK FACTORS | DIAGNOSTIC FACTORS >
Screening or accidental discovery l Directed
disease
discovery
PROGNOSTIC FACTORS
>
Invasion
| | | >
Risk of disease Preclinical disease Asymptomatic Symptomatic
Clinical disease
: —
Chemoprevention Chemoprotection Therapy

Fig. 1. Relationships between predictive factors, disease states, and interventions.

and some prognostic factors are diagnostic.
Diagnostic and prognostic factors are distin-
guished by different purposes; diagnostic fac-
tors are used to predict the outcome exis-
tence-of-disease (incidence), and prognostic fac-
tors are used to predict outcomes related to the
course of the disease. Thus, diagnostic factor
analysis is similar, but not identical to, prognos-
tic factor analysis.

Irrespective of the type of cancer, in order for
an intervention to be maximally beneficial to the
population at risk for the disease, to the patients
with preclinical disease, and to the patients with
clinical disease, three conditions must be met.

First, since individual factor predictions are
rarely close to 100% accurate, there must be a
way to aggregate predictive factors. Second, the
level at which the intervention (chemopreven-
tion, chemoprotection, or therapy) will be insti-
tuted must be determined. Third, the interven-
tion must be effective. Clearly the level at which
the intervention will be instituted depends on
accuracy of the ‘aggregate prediction and the
effectiveness of the intervention. Although at
first it may seem that these three conditions do
not apply to diagnosis, as we move more and
more into the realm of early detection, with its
greater diagnostic uncertainty, we will require
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the aggregation of diagnostic factors, the setting
of a level of diagnostic certainty, and the means
to treat the disease we have discovered.

SURROGATE OUTCOMES

Because we do not know if an intervention is
effective until the outcome of interest has oc-
curred, and because many years can separate an
intervention and the occurrence of the outcome,
we would like to find something (a surrogate
outcome) that changes soon after the intervention
if the intervention is effective in changing the
outcome. Surrogate outcomes are predictive
factors that are used for a purpose beyond the
prediction of an outcome; surrogate outcomes
are predictive factors that are substituted for the
true outcome for the purpose of determining the
effectiveness of an intervention. Intermediate
endpoint and surrogate endpoint refer to using
surrogate endpoints in clinical trials. If there is a
. choice between these three terms, it is best to use
the term "surrogate outcome."

Perfect Surrogate Outcomes

A perfect surrogate outcome is a factor that is
100% linked to the true outcome. We are almost
always interested in a perfect surrogate outcome
that precedes the true outcome. Since the perfect
preceding surrogate outcome is totally linked to
the true outcome, a change in the perfect preced-
ing surrogate outcome due to an intervention
will always signal a change in the true outcome.
Having a perfect surrogate outcome means that
we do not have to wait for the true outcome to
occur to assess the effectiveness of the interven-
tion on the true outcome. A perfect preceding
surrogate outcome can be used as an index of
the effectiveness of the intervention. All risk
factors, diagnostic factors, and prognostic factors
are potential surrogate outcomes, but few will
meet the criteria for a perfect surrogate outcome.

For a factor to be a perfect surrogate outcome,
two criteria must be met. First, it must be possi-
ble to discover the factor and determine its value
prior to the occurrence of the true outcome.
Second, there must be a 100% link between the
factor and the true outcome. To determine the
effect of an intervention using a surrogate out-
come, one must determine -the value of the
surrogate outcome before and after the interven-

tion. If the value of the surrogate outcome has
changed in the desired direction, then we would
expect the true outcome to change in the desired
direction. A surrogate outcome may not be
detected in everyone who has the disease.
However, those predicted to experience the true
outcome must actually do so.

Preclinical diagnostic factors can be used as a
surrogate outcome for the true incidence because
they accurately predict the true incidence. A
clinical diagnostic factor is a lagging indicator of
incidence, and therefore not a useful surrogate
outcome.

Imperfect Surrogate Outcomes

Risk factors and prognostic factors are more
problematic surrogate outcomes than diagnostic
factors because they do not meet the second
condition for a perfect surrogate outcome,
namely, a tight linkage between the factor and
the outcome. If the factor and the true outcome
are not 100% linked, then a change in the surro-
gate outcome does not always reflect a change in
the true outcome, and a lack of change in a
surrogate outcome does not always mean that
the true outcome has remained unchanged. Thus,
the existence, magnitude, and direction of change
in a true outcome are in doubt when the surro-
gate and true outcomes are not inextricably linked.

If we wish to use a factor as a surrogate
outcome in spite of a weak relationship between
the factor and the true outcome, there will be
patients predicted to experience the true outcome
who do not, and vice versa. This means that a
change in the post-intervention value of a factor
does not mean that we have necessarily changed
the true outcome. To the degree that we can
achieve close to 100% predictive accuracy, we
will approach the ability to effectively use the
factor as a surrogate outcome. If we allow a
degree of error in the surrogate outcome's ability
to predict the true outcome, we can use factors
with less than 100% linkage as surrogate out-
comes. In that case, we must be able to quantify
the degree of linkage (the accuracy of the factor
in predicting the true outcome) to determine if
the prediction error is within the error tolerance.
Error tolerance depends on the efficacy, side
effects, and cost of the intervention, and the
morbidity and mortality of the disease.
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Screening
Intervention Surrogate outcome True outcome
(risk factors) (incidence)

Fig. 2. Aspects of chemoprevention.

It is not clear that surrogate outcomes can
reduce the time required for the initial investiga-
tion of chemopreventive agents, but it is almost
certainly the case that the aggregation of risk
factors can reduce the number of people that are
required for the clinical trial, and that surrogate
outcomes can be used in post-clinical trial che-
moprevention efforts. Figure 2 shows the rela-
tionship between screening, intervention (che-
moprevention), surrogate outcome (risk factor),
and true outcome (incidence of disease). It is
clear that the initial investigation must determine
the accuracy of the screening test used to detect
the surrogate outcome, the link between the
surrogate outcome and the true outcome, and the
efficacy of the intervention. Aggregation of risk
factors into one surrogate outcome can reduce
the size of the clinical trial. After the clinical trial,
the surrogate outcome can allow physicians to
determine whether the intervention is helping
their patients, ie., they can use the surrogate
outcome to monitor the efficacy of the interven-
tion.

Cholesterol is an example of such monitoring.
Cholesterol is a surrogate outcome for coronary
artery disease. Patients are screened with a blood
test; those with elevated cholesterol levels receive
cholesterol lowering medications, and their
cholesterol level is followed. Because there is a
link between cholesterol levels and coronary
artery disease, we believe that lowering the
patient's cholesterol lowers the incidence of
coronary disease. In cancer there are few risk
factors strongly linked to the incidence of cancer;
therefore, we must combine risk factors to in-
crease the linkage between the surrogate out-
come and the true outcome.

AGGREGATION OF PREDICTIVE FACTORS

Aggregation uses an analytic model to com-
bine predictive factors to increase predictive
accuracy. The analytic model used to combine
prognostic factors for the American Joint Com-
mittee on Cancer's new prognostic system, a
system that will replace the TNM staging system,
is an artificial neural network.

The pTNM staging system is approximately
44% accurate in its predictions of five year
survival for breast cancer. Placing the three
PTNM variables in an artificial neural network
increases their predictive accuracy to 52%.
Combining other routinely collected variables
with the pTNM variables in an artificial neural
network increases predictive accuracy to 56%.
Adding several of the new putative prognostic
factors, e.g., HER-2/neu and P53, to the artificial
neural network further improves predictive
accuracy to 70%.

Artificial neural networks are an effective
method for combining predictive factors. In
chemoprevention, the aggregation of predictive
factors increases the degree of linkage of the
surrogate outcome to the true outcome. This
increased linkage increases the effectiveness of
the chemopreventive agent by targeting people
most likely to benefit from the intervention.

The ability to aggregate predictive factors can
increase the accuracy of risk assessment, the
accuracy of disease detection, and the ability to
predict outcome for use in determination of
therapy, patient information, quality assurance,
and clinical trials.

S
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Integrating Multiple Clinical Tests
to Increase Predictive Power

Harry B. Burke

1. Introduction '

Clinical tests provide information that can be used by statistical methods to
make patient outcome predictions. Outcomes are risk of disease, existence of
disease, and prognosis. In this chapter we define and describe predictive fac-
tors and clinical prediction and explain how combining predictive factors can
increase predictive accuracy, describe the advantages and disadvantages of
commonly used statistical methods, and recommend an approach to the report-
ing of predictive factor research.

2. Predictive Factors

A predictive factor predicts an outcome (risk of disease, existence of dis-
ease, or prognosis) by virtue of its relationship with the disease process that
causes the outcome. For example, the prognostic factor mutant p53 is associ-
ated with breast cancer because of its role in the regulation of apoptosis. Such
terms as marker, biomarker, predictor, prognosticator, indicator, surrogate fac-
tor, and intermediate biomarker have been used to identify variables that are
connected to medical outcomes. Their meanings overlap, and their undifferen-
tiated use can cause confusion. All predictive factors are markers of disease
(i.e., they are in some way associated with the disease process), but not all
markers of disease have sufficient predictive power to be called predictive fac-
tors. We use the term factor to identify markers of disease that either are, or
have the potential to be, predictive for a given outcome in a specified model.

Determining whether a marker is a predictive factor requires that:

1. The variable is measured in a defined population;
2. The population is followed until enough outcomes have occurred (i.e., deaths); and
3. The relationship between the variable and the outcome is determined.

From: Methods in Molecular Medicine, Vol. 14: Tumor Marker Protocols
Edited by: M. Hanausek and Z. Walaszek © Humana Press Inc., Totowa, NJ
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If the variable predicts the outcome with “sufficient” accuracy (where “suf-
ficient” varies with the question being addressed) in a specified model, it is
called a predictive factor. If the predicted outcome always occurs, we say that
the predictive factor and the outcome are 100% linked, i.e., the factor has a
100% predictive accuracy (1).

There are three types of predictive factors; risk, diagnostic, and prognostic
(1). They differ in their outcomes and predictive power. “Risk” is an ambigu-
ous term. We use “risk” to refer to “risk of disease.” “Risk,” when used in the
context of “risk of recurrence” or “risk of death,” is called “probability,” as in

“probability of recurrence” and “probability of death.” Risk factor; the main
outcome of interest is incidence of disease. The factor, either alone or in com-
bination with other factors, is much less than 100% predictive of the disease
occurring by a specified time in the future. Risk can be viewed as a propensity
for the disease. Diagnostic factor; the main outcome of interest is also inci-
dence of disease. The factor, either alone or in combination with other factors,
is close to 100% predictive of disease. Prognostic factor; the main outcome
of interest is death. A factor is rarely a strong predictor in isolation from other
prognostic factors. There is domain overlap in that risk factors can be prognos-
tic, but they cannot be diagnostic, and diagnostic factors can be prognostic, but
they cannot be risk factors.

There are three subtypes of predictive factors: natural history, therapy-
dependent, and post-therapy (I). Natural history predictive factors predict the
future occurrence (risk), current existence (diagnosis), or course (prognostic)
of a disease without an intervention. For risk and prognosis, natural history
should the baseline against which all interventions are tested. Therapy-
dependent predictive factors assume that there are effective therapies and
predict whether the patient will respond to a particular intervention (for
example, chemoprevention or chemotherapy). A natural history predictive fac-
tor may also be a therapy-dependent predictive factor. Post-therapy predictive
factors require that patients respond to an intervention. They predict recur-
rence of the risk of disease or recurrence of the disease.

The predictive power of a factor depends on its intrinsic and extrinsic powers.
The intrinsic predictive power of a factor is related to its “connectedness” to the
disease process, i.c., its association to the disease process. The less connected the
factor is, the less predictive it is. A direct connection means that the factor is an
integral part of the disease process itself. An indirect connection means that it is
not an integral part of the disease process but is related to the disease process,
such as being a byproduct of it (i.e., a secondary infection). The extrinsic predic-
tive power of the factor depends on the question being asked, i.e., the specific
factor-outcome relationship being examined. For a specific disease process and
outcome, the predictive accuracy of a factor depends on:
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1. How closely connected the factor is to the disease process (individual fac-
tor power) and its relationship to the other factors (degree of predictive
overlap);

2. How easy it is to collect and measure the factor; and

3. The degree to which the selected statistical method is able to capture the indi-
vidual factor’s predictive information and to integrate it with the information of
other factors.

It is rarely the case that one factor is sufficiently predictive, i.e., that it
is able to predict the outcome of interest with 100% accuracy. The usual
strategy, when dealing with predictive factors, is to combine several in a
predictive model. The most useful grouping of factors is one in which all
of the factors are powerful and predictively orthogonal to each other, i.e.,
they index independent aspects of the disease process. If they represent
aspects of the disease that are not independent of each other, then to the
degree that their information overlaps is the degree to which one will not
add predictive power. The statistical method employed must be able to
capture the complexity of the disease process indexed by the predictive
factors.

A predictive model for a specific outcome is the result of entering one or
more predictive factors into a statistical method. The statistical method
attempts to capture the relationship between the factors and the outcome. For
example, the mathematical formula generated by the logistic regression sta-
tistical method relates the predictive factors (input variables), in terms of
their B-coefficients, to a binary disease outcome (relapse, death, and so forth).
It should be noted that the predictive power of a factor depends on the spe-
cific statistical method selected and on the other factors selected to be
included in the model. The statistical model that results from the application
of a statistical method, learning the relationship between the factors and the
outcome, may or may not be the most efficient at capturing the predictive
power of the factors.

Before discussing specific statistical methods, it is important to distin-
guish among significance, accuracy, and importance (2). Model significance
asks if the observed predictions are really different from those produced by
another model or from those resulting from chance.

Significance is not accuracy. Accuracy is the association between the
model’s predictions and the known outcomes in a test population. The
importance of a model or a factor is determined by whether the model or
factor possesses sufficient accuracy to be useful in answering a particular
clinical question. Finally, the assessment of model or factor significance,
accuracy, and importance must be based on test data set results, not on train-
ing data set results.
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3. Advantages and Disadvantages of Statistical Methods

Many methods can be used to combine predictive factors. In cancer, they
include bins, stages, and indexes; decision trees; and regression methods,
including logistic, proportional hazards, and artificial neural networks.

Bins are the result of the mutually exclusive and exhaustive partitioning of
discrete variables. Each combination of variable values is a bin, and all patients
are placed in the bin corresponding to their variable value combination (2). An
example is the TNM classification of breast cancer (3). Tumor size (Tis, T1,
T2, T3, T4), number of positive regional lymph nodes (NO, N1, N2, N3), and
existence of metastases (M0, M1) produce 40 bins (2).

Each patient in a bin receives the same prediction; namely, the most fre-
quent outcome. If there are enough patients in each bin, it can be shown that
the most frequent outcome is the best predictor of the true outcome. In
other words, no prediction model can be more accurate than a bin model if
the variables are discrete and the population is large. Problems with bin
models (2) include:

1. Continuous variables must be cut up into discrete variables. This almost always
results in a loss of predictive information and therefore a loss of accuracy.

2. As the number of discrete variables increases, the number of bins increases expo-
nentially. In order to maintain accuracy, there must be a corresponding exponen-
tial increase in the size of the patient population.

3. The proliferation of bins reduces the ability to understand the phenomena. Bin
proliferation negates the main advantage of a bin model; namely, its ease of
understanding and ease of use.

Bin models are rarely used in situations in which there are more than two or
three predictive factors or where each factor possesses more than a few strata.

A partial solution to the problems of a bin model is a stage model (2). A
stage model is the grouping of bins into super-bins. The justification for the
grouping is the assumption that the factors selected represent “stages” of the
disease process. For example, in breast cancer, the TNM staging system com-
bines 40 TNM classification bins into six super-bins (TNM stages) based on
decreasing survival (“stages of survival”).

A small set of stages has the potential to maintain explanatory simplicity
and ease of use. Problems with stage models include:

1. The combining of bins into super-bins/stages can substantially reduce predictive
accuracy.

2. Stage systems do not overcome the exponential increase in bins and patients
associated with adding a variable to the analysis: They just delay the problem at
a cost in predictive accuracy. If the stages are held constant when variables (and
their associated bins) are added to the staging system, the potential improvement

Y
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in accuracy associated with the additional bins will be small to nonexistent. But,
if the stages are expanded to accommodate additional bins, the system loses its
ease of understanding and usefulness. Thus, attempts to improve predictive accu-
racy by adding variables to a bin/stage model are rarely successful.

'3, The problems of cutting up continuous variables, with the resulting loss in pre-
dictive accuracy, remains.

4. Finally, if a single staging system is used for more than one cancer site, the stag-
ing rules may be more applicable to some sites than to other sites. The sites to
which they do not apply will experience major losses in predictive accuracy.

Indexes associate numerical scores (usually based on a bounded, linear
scale) with bins or groups of bins. Each score is associated with one of a small
number of disease stages (usually a severity of illness system). Each patient
receives the prediction of the stage in which their score places them. Indexes
offer some flexibility in the grouping of bins, but at the cost of further degrada-
tion in predictive accuracy because additional information is lost. The simplest
example of an index is the Apgar. An example in breast cancer is the
Nottingham Index (4).

The accuracy of different stratifications of a predictive factor(s) can be com-
pared. For a specific site (i.e., breast) and predictor(s) (tumor size <2, 2-5, >5)
any bin or group of bins, or stage (bin or index) or group of stages, can be com-
pared, in terms of a specific outcome, with another stratification (tumor size <1,
1—-<2, 2—<3, 3—<4, 4-<5, 5->5). This contrast can be over a single time inter-
val without respect to events within the interval (i.e., logistic regression) or with
respect to the events within the interval (5,6). For a single interval without respect
to events within the interval, accuracy has been assessed by several discrimina-
tive association approaches, including Goodman and Kruskall’s Gamma (7),
Kendall’s Tau (8), or the area under the receiver operating characteristic (9).

The usual descriptive approach for contrasting predictive factors across a
series of event time intervals is the Kaplan-Meier product-limit method (5)
(inferential methods that can accommodate continuous variables, and that usu-
ally assume proportional hazards, will be discussed later when regression meth-
ods are presented). A Kaplan-Meier plot should always include confidence
intervals for each stratum (i.e., each step function). A significant difference
within a Kaplan-Meier stratification (tumor size <2, 2-5, >5) is usually
assessed by a log-rank test (10). It is important to note that there is currently no
method for comparing the accuracy of two different Kaplan-Meier plots (i.e.,
two different stratifications of the same predictive factors). It is incorrect to
use the p-value of the log-rank test to select one stratification over another,
because the log-rank test only determines whether a stratification is likely to
have occurred by chance. An extreme stratification may result in smaller
p-values, but it may also reduce predictive accuracy.
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Decision trees split predictive factors to maximize predictive power using a
loss function, such as the log-likelihood and a greedy search algorithm. A well-
known decision tree approach is the Classification and Regression Trees (CART)
recursive partitioning method (11). Empirically, we have not found CART, either
pruned or shrunk, to be the most accurate statistical method when compared to
regression methods. Its problems include the selection of the correct loss func-
tion, difficulty dealing with continuous variables, and overfitting when search-
ing for the best predictors when there are more than two or three splits.

Univariate regression methods are not appropriate for determining whether a
variable is a predictive factor. Univariate methods should not be used, because
new variables must be assessed in the context of the known factors, and because
some variables are only predictive when they interact with another variable.

Logistic regression assess the cumulative probability of a binary event
occurring by a specific time. It uses a maximum likelihood loss function and a
greedy search technique. It is a very efficient method for binary outcome prob-
lems (i.e., recurrence and survival). Its limitation is that it usually spans a large
time interval and does not distinguish when events occur within the time inter-
val. This limitation can be overcome if several sub-time intervals are created
within the overall time interval. Logistic regression models can be created for
each sub-time interval. Censoring can be accommodated by removing cases
that are censored within the time interval that censoring occurs.

Proportional hazards methods include the Cox (6) and less commonly the
Weibull or exponential (12). Proportional hazards methods assume that the
hazard of each patient is proportional to the hazards of all the other patients,
and that a patient’s hazard is related to that patient’s relative risk. The Cox
model does not create survival curves. For Cox-related survival curves, a
baseline hazard must be introduced (for example, Breslow-Cox estimates) (13).
Some researchers incorrectly believe that the Cox is the only regression method
that can deal with censoring (see paragraph on logistic regression above).
Because, in cancer, the proportional hazards’ assumption may be violated,
researchers who use the Cox model must demonstrate that the proportional
hazards assumption holds for their population.

Artificial neural networks are a general regression method (14,15). They
can perform almost any regression task. In addition, three-layer artificial neu-
ral networks automatically capture nonlinearity and complex interactions. They
can handle censoring in the same way that multi-interval logistic regression
handles censoring. Artificial neural networks are as transparent as the phenom-
ena contained in the data. For simple phenomena, artificial neural networks are
easily understood; for complex phenomena they are complex and less easily
understood. Artificial neural networks are especially recommended in the
domain of complex systems (e.g., the molecular-genetic domain of cancer).

Ve
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4. Reporting Predictive Factor Research Results

There is a great deal of variation in the reporting of predictive factor results.
This variability makes it difficult to understand and compare results. The fol-
lowing is a recommended approach to reporting the discovery of a new predic-
tive factor or the validation of an existing factor.

For a defined subset of patients with the a disease, __b___isa

__ ¢ predictive factorfor___d___whenassayed___e by__ f , for

the_ g onatestdatasetwith___h characteristics, the___i___1is sig-
nificant atthe ___j__level using the ___k___statistical method, which also
incorporates 1 predictive factors, for ___m therapy. Using the

n___ method to assess its accuracy, the k statistical model is

0 accurate on the test data set.

“Defined” means specification of collection method, inclusion and exclu-
sion criteria, and so forth.

Name of disease.

Name of the predictive factor.

: Type and subtype of predictive factor (i.e., risk, diagnosis, prognosis; natural
history, therapy-dependent, post-therapy).

Outcome (i.e., 5-yr breast cancer-specific survival).

Time of assay (i.e., at discovery, prior to therapy, after therapy).

Specific laboratory method (i.e., immunohistochemistry).

If stratified, the specific range/cut-point/and so forth of the prognostic factor. If
the variable value is based on rater judgment, then Cohen’s k should be reported.
Relevant characteristics of the data set, including:

1. Data set size,

2. Number of events, and

3. Whether the therapy was randomized.

The value and confidence interval.

For example, p < 0.05 for one test of the data. If multiple tests of the data are
performed, an adjustment may be required.

Type of multivariate statistical method (i.e., logistic regression, Cox).

Other relevant prognostic factors, if they are included in the multivariate
model.

Specific type of surgery, chemotherapy, radiation therapy.

Area under the receiver operating characteristic (Az) R, y-square, etc.
Numerical value and its range of possible values (i.e., Az = 0.75, 0.50, —1.0).
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